Solveeit Logo

Question

Question: If $\alpha$ & $\beta^2$ are the roots of the equation, $8x^2 - 10x + 3 =$ $\frac{1}{0}$, wehre $\bet...

If α\alpha & β2\beta^2 are the roots of the equation, 8x210x+3=8x^2 - 10x + 3 = 10\frac{1}{0}, wehre β2>12\beta^2 > \frac{1}{2}, then the equation whose roots are (α(\alpha +iβ)100+i\beta)^{100} & (αiβ)100(\alpha-i\beta)^{100} is :

A

x2x+1=0x^2-x+1=0

B

x2+x+1=0x^2+x+1=0

C

x2x1=0x^2-x-1=0

D

x2+x1=0x^2+x-1=0

Answer

x^2+x+1=0

Explanation

Solution

Solution:

  1. The quadratic equation is 8x210x+3=0.8x^2 - 10x + 3 = 0. Its discriminant D=102483=10096=4D = 10^2 - 4 \cdot 8 \cdot 3 = 100 - 96 = 4. Therefore, the roots are 10±216=1216=34and816=12.\frac{10 \pm 2}{16} = \frac{12}{16} = \frac{3}{4} \quad \text{and} \quad \frac{8}{16} = \frac{1}{2}.

  2. Given that one root is β2\beta^2 and β2>12\beta^2 > \frac{1}{2}, we have β2=34\beta^2 = \frac{3}{4} and so α=12\alpha = \frac{1}{2}. Then, β=32\beta = \frac{\sqrt{3}}{2} (taking the positive value).

  3. Now, α+iβ=12+i32=eiπ/3,\alpha + i\beta = \frac{1}{2} + i\frac{\sqrt{3}}{2} = e^{i\pi/3}, αiβ=12i32=eiπ/3.\alpha - i\beta = \frac{1}{2} - i\frac{\sqrt{3}}{2} = e^{-i\pi/3}.

  4. Raising these to the 100th power: (α+iβ)100=ei(100π/3)(\alpha + i\beta)^{100} = e^{i(100\pi/3)} (αiβ)100=ei(100π/3).(\alpha - i\beta)^{100} = e^{-i(100\pi/3)}.

  5. Reduce the exponent modulo 2π2\pi:

    For positive exponent: 100π332π=100π96π3=4π3\frac{100\pi}{3} - 32\pi = \frac{100\pi - 96\pi}{3} = \frac{4\pi}{3}. Hence, one root is ei4π/3=12i32e^{i4\pi/3} = -\tfrac{1}{2} - i\frac{\sqrt{3}}{2}.

    For negative exponent: 100π3+34π=100π+102π3=2π3-\frac{100\pi}{3} + 34\pi = \frac{-100\pi + 102\pi}{3} = \frac{2\pi}{3}. Hence, the other root is ei2π/3=12+i32e^{i2\pi/3} = -\tfrac{1}{2} + i\frac{\sqrt{3}}{2}.

  6. Their sum and product: Sum =ei4π/3+ei2π/3=(12i32)+(12+i32)=1.= e^{i4\pi/3}+e^{i2\pi/3} = \left(-\frac{1}{2}-i\frac{\sqrt{3}}{2}\right)+\left(-\frac{1}{2}+i\frac{\sqrt{3}}{2}\right) = -1. Product =ei(4π/3+2π/3)=ei2π=1.= e^{i(4\pi/3+2\pi/3)} = e^{i2\pi} = 1.

  7. The quadratic equation with roots r1r_1 and r2r_2 is: x2(r1+r2)x+r1r2=x2(1)x+1=x2+x+1=0.x^2 - (r_1 + r_2)x + r_1r_2 = x^2 - (-1)x + 1 = x^2 + x + 1 = 0.

Explanation (minimal): Roots of 8x210x+3=08x^2-10x+3=0 are 34\frac{3}{4} and 12\frac{1}{2}. Given β2>12\beta^2>\frac{1}{2}, take β2=34\beta^2=\frac{3}{4} and α=12\alpha=\frac{1}{2}. Then, α±iβ=e±iπ/3\alpha \pm i\beta=e^{\pm i\pi/3} and raised to the 100th power yield ei4π/3e^{i4\pi/3} and ei2π/3e^{i2\pi/3}. Their sum is 1-1 and product is 11, forming the quadratic x2+x+1=0x^2+x+1=0.