Solveeit Logo

Question

Question: If $a(b-c)x^2+b(c-a)x+c(a-b)=0$ has equal roots, then P.T.o $\frac{1}{a}+\frac{1}{c}=\frac{2}{b}$...

If a(bc)x2+b(ca)x+c(ab)=0a(b-c)x^2+b(c-a)x+c(a-b)=0 has equal roots, then P.T.o 1a+1c=2b\frac{1}{a}+\frac{1}{c}=\frac{2}{b}

Answer

1a+1c=2b\frac{1}{a}+\frac{1}{c}=\frac{2}{b}

Explanation

Solution

The sum of coefficients is a(bc)+b(ca)+c(ab)=abac+bcab+acbc=0a(b-c)+b(c-a)+c(a-b) = ab-ac+bc-ab+ac-bc=0. This implies x=1x=1 is a root. For equal roots, x=1x=1 must be a double root. For a quadratic Ax2+Bx+C=0Ax^2+Bx+C=0 to have a double root at x=1x=1, we need C=AC=A. Thus, c(ab)=a(bc)c(a-b) = a(b-c). Expanding gives acbc=abacac-bc = ab-ac, so 2ac=ab+bc2ac = ab+bc. Dividing by abcabc (assuming a,b,c0a,b,c \neq 0) yields 2b=1c+1a\frac{2}{b} = \frac{1}{c} + \frac{1}{a}.