Solveeit Logo

Question

Question: A physical quantity Q is related to four observables a, b, c, d as follows : $Q = \frac{ab^4}{cd}$ ...

A physical quantity Q is related to four observables a, b, c, d as follows : Q=ab4cdQ = \frac{ab^4}{cd}

where, a = (60 ±3)Pa; b = (20 ± 0.1)m; c = (40 ± 0.2)Nsm⁻² and d = (50 ± 0.1)m, then the percentage error in Q is x1000\frac{x}{1000}, where x = ________.

Answer

7700

Explanation

Solution

To find the percentage error in Q, we use the rules of error propagation for multiplication and division.

Given the relation: Q=ab4cdQ = \frac{ab^4}{cd}

The formula for the maximum fractional error in Q is given by: ΔQQ=1Δaa+4Δbb+1Δcc+1Δdd\frac{\Delta Q}{Q} = \left|1 \cdot \frac{\Delta a}{a}\right| + \left|4 \cdot \frac{\Delta b}{b}\right| + \left|-1 \cdot \frac{\Delta c}{c}\right| + \left|-1 \cdot \frac{\Delta d}{d}\right|

Since errors always add up in magnitude, we consider the absolute values of the powers: ΔQQ=1Δaa+4Δbb+1Δcc+1Δdd\frac{\Delta Q}{Q} = 1 \cdot \frac{\Delta a}{a} + 4 \cdot \frac{\Delta b}{b} + 1 \cdot \frac{\Delta c}{c} + 1 \cdot \frac{\Delta d}{d}

Now, let's calculate the fractional errors for each observable:

  1. For 'a': a=(60±3)a = (60 \pm 3) Pa Δaa=360=0.05\frac{\Delta a}{a} = \frac{3}{60} = 0.05

  2. For 'b': b=(20±0.1)b = (20 \pm 0.1) m Δbb=0.120=0.005\frac{\Delta b}{b} = \frac{0.1}{20} = 0.005

  3. For 'c': c=(40±0.2)c = (40 \pm 0.2) Nsm⁻² Δcc=0.240=0.005\frac{\Delta c}{c} = \frac{0.2}{40} = 0.005

  4. For 'd': d=(50±0.1)d = (50 \pm 0.1) m Δdd=0.150=0.002\frac{\Delta d}{d} = \frac{0.1}{50} = 0.002

Substitute these values into the error propagation formula: ΔQQ=(0.05)+4×(0.005)+(0.005)+(0.002)\frac{\Delta Q}{Q} = (0.05) + 4 \times (0.005) + (0.005) + (0.002) ΔQQ=0.05+0.020+0.005+0.002\frac{\Delta Q}{Q} = 0.05 + 0.020 + 0.005 + 0.002 ΔQQ=0.077\frac{\Delta Q}{Q} = 0.077

The percentage error in Q is given by: Percentage Error = ΔQQ×100%\frac{\Delta Q}{Q} \times 100\% Percentage Error = 0.077×100%0.077 \times 100\% Percentage Error = 7.7%7.7\%

The problem states that the percentage error in Q is x1000\frac{x}{1000}. So, we have: 7.7=x10007.7 = \frac{x}{1000} To find x, multiply 7.7 by 1000: x=7.7×1000x = 7.7 \times 1000 x=7700x = 7700

The final answer is 7700.

Explanation of the solution:

The percentage error in a quantity derived from products and quotients of other quantities is the sum of the percentage errors of the individual quantities, with each percentage error multiplied by the power to which that quantity is raised.

Given Q=ab4cdQ = \frac{ab^4}{cd}, the fractional error is ΔQQ=Δaa+4Δbb+Δcc+Δdd\frac{\Delta Q}{Q} = \frac{\Delta a}{a} + 4\frac{\Delta b}{b} + \frac{\Delta c}{c} + \frac{\Delta d}{d}.

Calculate individual fractional errors: Δaa=360=0.05\frac{\Delta a}{a} = \frac{3}{60} = 0.05 Δbb=0.120=0.005\frac{\Delta b}{b} = \frac{0.1}{20} = 0.005 Δcc=0.240=0.005\frac{\Delta c}{c} = \frac{0.2}{40} = 0.005 Δdd=0.150=0.002\frac{\Delta d}{d} = \frac{0.1}{50} = 0.002

Summing them up: ΔQQ=0.05+4(0.005)+0.005+0.002=0.05+0.02+0.005+0.002=0.077\frac{\Delta Q}{Q} = 0.05 + 4(0.005) + 0.005 + 0.002 = 0.05 + 0.02 + 0.005 + 0.002 = 0.077.

Percentage error = 0.077×100%=7.7%0.077 \times 100\% = 7.7\%.

Given that percentage error is x1000\frac{x}{1000}, we have 7.7=x10007.7 = \frac{x}{1000}, which gives x=7700x = 7700.