Solveeit Logo

Question

Question: If $x^3-px^2+qx-27=0$ has three positive roots where p, q>0 and $p+k+l^2=4l+10$ where $k, l \in \mat...

If x3px2+qx27=0x^3-px^2+qx-27=0 has three positive roots where p, q>0 and p+k+l2=4l+10p+k+l^2=4l+10 where k,lRk, l \in \mathbb{R}, then the greatest value of k is

A

1

B

5

C

6

D

7

Answer

5

Explanation

Solution

Let the three positive roots of the cubic equation x3px2+qx27=0x^3-px^2+qx-27=0 be α,β,γ\alpha, \beta, \gamma. By Vieta's formulas:

  1. Sum of the roots: α+β+γ=p\alpha + \beta + \gamma = p
  2. Product of the roots: αβγ=27\alpha\beta\gamma = 27

Since the roots are positive, we can apply the AM-GM inequality: α+β+γ3αβγ3\frac{\alpha + \beta + \gamma}{3} \ge \sqrt[3]{\alpha\beta\gamma} Substituting the values: p3273\frac{p}{3} \ge \sqrt[3]{27} p33\frac{p}{3} \ge 3 p9p \ge 9 The minimum value of pp is 9.

We are given p+k+l2=4l+10p+k+l^2=4l+10. Rearranging for kk: k=4l+10l2pk = 4l + 10 - l^2 - p k=10p+(4ll2)k = 10 - p + (4l - l^2) To maximize kk, we need to maximize the term (4ll2)(4l - l^2) and use the minimum value of pp. The expression 4ll24l - l^2 can be maximized by completing the square: 4ll2=(l24l)=((l2)24)=4(l2)24l - l^2 = -(l^2 - 4l) = -( (l-2)^2 - 4 ) = 4 - (l-2)^2 The maximum value of 4ll24l - l^2 is 4, which occurs when l=2l=2.

Now, substitute the maximum value of 4ll24l-l^2 and the minimum value of pp into the expression for kk: kmax=10pmin+(4ll2)maxk_{max} = 10 - p_{min} + (4l - l^2)_{max} kmax=109+4k_{max} = 10 - 9 + 4 kmax=5k_{max} = 5 The greatest value of kk is 5.