Solveeit Logo

Question

Question: If $T_r \in N; r \in N$, $\sum_{r=1}^{n} T_r = \frac{1}{5}(n^2 - 12n + 39)(4 \cdot 6^n - 5 \cdot 3^...

If TrN;rNT_r \in N; r \in N,

r=1nTr=15(n212n+39)(46n53n+1)\sum_{r=1}^{n} T_r = \frac{1}{5}(n^2 - 12n + 39)(4 \cdot 6^n - 5 \cdot 3^n + 1),

Tr=3Tr1+6r2rnT_r = 3T_{r-1} + 6^r \forall 2 \leq r \leq n, T1=6T_1 = 6,

then the value of nn, is equal to

Answer

6

Explanation

Solution

The problem provides a recurrence relation for a sequence TrT_r and an expression for its sum Sn=r=1nTrS_n = \sum_{r=1}^{n} T_r. We need to find the value of nn.

Step 1: Solve the recurrence relation for TrT_r. The given recurrence relation is Tr=3Tr1+6rT_r = 3T_{r-1} + 6^r for 2rn2 \leq r \leq n, with T1=6T_1 = 6. To solve this, divide by 3r3^r: Tr3r=3Tr13r+6r3r\frac{T_r}{3^r} = \frac{3T_{r-1}}{3^r} + \frac{6^r}{3^r} Tr3r=Tr13r1+2r\frac{T_r}{3^r} = \frac{T_{r-1}}{3^{r-1}} + 2^r Let Ur=Tr3rU_r = \frac{T_r}{3^r}. The recurrence relation transforms into: Ur=Ur1+2rfor r2U_r = U_{r-1} + 2^r \quad \text{for } r \geq 2 First, find U1U_1: U1=T131=63=2U_1 = \frac{T_1}{3^1} = \frac{6}{3} = 2 Now, express UrU_r as a sum: Ur=U1+k=2r2kU_r = U_1 + \sum_{k=2}^{r} 2^k Ur=2+(22+23++2r)U_r = 2 + (2^2 + 2^3 + \dots + 2^r) The sum in the parenthesis is a geometric progression with first term a=22=4a = 2^2 = 4, common ratio R=2R = 2, and number of terms (r1)(r-1). The sum of this geometric progression is a(Rr11)R1=4(2r11)21=4(2r11)=222r14=2r+14\frac{a(R^{r-1}-1)}{R-1} = \frac{4(2^{r-1}-1)}{2-1} = 4(2^{r-1}-1) = 2^2 \cdot 2^{r-1} - 4 = 2^{r+1} - 4. Substitute this back into the expression for UrU_r: Ur=2+(2r+14)=2r+12U_r = 2 + (2^{r+1} - 4) = 2^{r+1} - 2 Now, substitute back Ur=Tr3rU_r = \frac{T_r}{3^r}: Tr3r=2r+12\frac{T_r}{3^r} = 2^{r+1} - 2 Tr=3r(2r+12)=3r2(2r1)T_r = 3^r (2^{r+1} - 2) = 3^r \cdot 2 \cdot (2^r - 1) Tr=23r2r23rT_r = 2 \cdot 3^r \cdot 2^r - 2 \cdot 3^r Tr=26r23rT_r = 2 \cdot 6^r - 2 \cdot 3^r Let's verify for T1T_1: T1=261231=126=6T_1 = 2 \cdot 6^1 - 2 \cdot 3^1 = 12 - 6 = 6, which matches the given T1T_1.

Step 2: Calculate the sum Sn=r=1nTrS_n = \sum_{r=1}^{n} T_r. Sn=r=1n(26r23r)S_n = \sum_{r=1}^{n} (2 \cdot 6^r - 2 \cdot 3^r) Sn=2r=1n6r2r=1n3rS_n = 2 \sum_{r=1}^{n} 6^r - 2 \sum_{r=1}^{n} 3^r Both sums are geometric progressions. For r=1n6r\sum_{r=1}^{n} 6^r: first term a1=6a_1=6, common ratio R1=6R_1=6. Sum is 6(6n1)61=65(6n1)\frac{6(6^n-1)}{6-1} = \frac{6}{5}(6^n-1). For r=1n3r\sum_{r=1}^{n} 3^r: first term a2=3a_2=3, common ratio R2=3R_2=3. Sum is 3(3n1)31=32(3n1)\frac{3(3^n-1)}{3-1} = \frac{3}{2}(3^n-1). Substitute these sums back into the expression for SnS_n: Sn=265(6n1)232(3n1)S_n = 2 \cdot \frac{6}{5}(6^n-1) - 2 \cdot \frac{3}{2}(3^n-1) Sn=125(6n1)3(3n1)S_n = \frac{12}{5}(6^n-1) - 3(3^n-1) Sn=1256n12533n+3S_n = \frac{12}{5} 6^n - \frac{12}{5} - 3 \cdot 3^n + 3 Sn=1256n33n+(3125)S_n = \frac{12}{5} 6^n - 3 \cdot 3^n + \left(3 - \frac{12}{5}\right) Sn=1256n33n+15125S_n = \frac{12}{5} 6^n - 3 \cdot 3^n + \frac{15-12}{5} Sn=1256n1553n+35S_n = \frac{12}{5} 6^n - \frac{15}{5} 3^n + \frac{3}{5} Factor out 15\frac{1}{5}: Sn=15(126n153n+3)S_n = \frac{1}{5} (12 \cdot 6^n - 15 \cdot 3^n + 3) Further factor out 3 from the terms inside the parenthesis: Sn=153(46n53n+1)S_n = \frac{1}{5} \cdot 3 \cdot (4 \cdot 6^n - 5 \cdot 3^n + 1)

Step 3: Compare the derived SnS_n with the given SnS_n. The given sum is: Sn=15(n212n+39)(46n53n+1)S_n = \frac{1}{5}(n^2 - 12n + 39)(4 \cdot 6^n - 5 \cdot 3^n + 1) Comparing this with our derived sum: 153(46n53n+1)=15(n212n+39)(46n53n+1)\frac{1}{5} \cdot 3 \cdot (4 \cdot 6^n - 5 \cdot 3^n + 1) = \frac{1}{5}(n^2 - 12n + 39)(4 \cdot 6^n - 5 \cdot 3^n + 1) For this equality to hold, the coefficients of (46n53n+1)(4 \cdot 6^n - 5 \cdot 3^n + 1) must be equal (assuming (46n53n+1)0(4 \cdot 6^n - 5 \cdot 3^n + 1) \neq 0, which it is not for nNn \in N): 3=n212n+393 = n^2 - 12n + 39

Step 4: Solve the quadratic equation for nn. n212n+393=0n^2 - 12n + 39 - 3 = 0 n212n+36=0n^2 - 12n + 36 = 0 This is a perfect square trinomial: (n6)2=0(n-6)^2 = 0 n6=0n-6 = 0 n=6n = 6