Solveeit Logo

Question

Question: As shown in the following figures, block of mass 2 kg is in equilibrium in the vertical plane. At...

As shown in the following figures, block of mass 2 kg is in equilibrium in the vertical plane.

At a certain instant right spring in case-1 and right string in case-2 are cut. Then the ratio of instantaneous acceleration of block in case-1 to case-2 just after the cutting is (strings and springs are ideal)

A

0

Answer

1

Explanation

Solution

Let mm be the mass of the block and θ=37\theta = 37^\circ be the angle the springs/strings make with the vertical.

Case 1: Right spring is cut Initially, the block is in equilibrium. Let FsF_s be the force in each spring. Vertical equilibrium: 2Fscos(θ)=mg2 F_s \cos(\theta) = mg Horizontal equilibrium: Fssin(θ)Fssin(θ)=0F_s \sin(\theta) - F_s \sin(\theta) = 0 (already satisfied) So, Fs=mg2cos(θ)F_s = \frac{mg}{2 \cos(\theta)}.

Just after the right spring is cut, the forces acting on the block are:

  1. The force from the left spring, Fs1\vec{F}_{s1}, which is unchanged immediately after cutting. Its magnitude is FsF_s.
  2. The weight of the block, mgm\vec{g}, acting vertically downwards.

Let's set up a coordinate system with the y-axis vertically upwards and the x-axis horizontally. Assuming the left spring is to the left of the vertical: Fs1=Fssin(θ)i^+Fscos(θ)j^\vec{F}_{s1} = -F_s \sin(\theta) \hat{i} + F_s \cos(\theta) \hat{j} mg=mgj^m\vec{g} = -mg \hat{j}

The net force in Case 1 is: Fnet,1=Fs1+mg=Fssin(θ)i^+(Fscos(θ)mg)j^\vec{F}_{net,1} = \vec{F}_{s1} + m\vec{g} = -F_s \sin(\theta) \hat{i} + (F_s \cos(\theta) - mg) \hat{j} Substitute Fscos(θ)=mg2F_s \cos(\theta) = \frac{mg}{2}: Fnet,1=Fssin(θ)i^+(mg2mg)j^=Fssin(θ)i^mg2j^\vec{F}_{net,1} = -F_s \sin(\theta) \hat{i} + (\frac{mg}{2} - mg) \hat{j} = -F_s \sin(\theta) \hat{i} - \frac{mg}{2} \hat{j}

The instantaneous acceleration in Case 1 is: a1=Fnet,1m=Fssin(θ)mi^g2j^\vec{a}_1 = \frac{\vec{F}_{net,1}}{m} = -\frac{F_s \sin(\theta)}{m} \hat{i} - \frac{g}{2} \hat{j}

Case 2: Right string is cut Initially, the block is in equilibrium. Let TT be the tension in each string. Vertical equilibrium: 2Tcos(θ)=mg2 T \cos(\theta) = mg Horizontal equilibrium: Tsin(θ)Tsin(θ)=0T \sin(\theta) - T \sin(\theta) = 0 (already satisfied) So, T=mg2cos(θ)T = \frac{mg}{2 \cos(\theta)}.

Just after the right string is cut, the forces acting on the block are:

  1. The tension from the left string, T1\vec{T}_1, which is unchanged immediately after cutting. Its magnitude is TT.
  2. The weight of the block, mgm\vec{g}, acting vertically downwards.

Assuming the left string is to the left of the vertical: T1=Tsin(θ)i^+Tcos(θ)j^\vec{T}_1 = -T \sin(\theta) \hat{i} + T \cos(\theta) \hat{j} mg=mgj^m\vec{g} = -mg \hat{j}

The net force in Case 2 is: Fnet,2=T1+mg=Tsin(θ)i^+(Tcos(θ)mg)j^\vec{F}_{net,2} = \vec{T}_1 + m\vec{g} = -T \sin(\theta) \hat{i} + (T \cos(\theta) - mg) \hat{j} Substitute Tcos(θ)=mg2T \cos(\theta) = \frac{mg}{2}: Fnet,2=Tsin(θ)i^+(mg2mg)j^=Tsin(θ)i^mg2j^\vec{F}_{net,2} = -T \sin(\theta) \hat{i} + (\frac{mg}{2} - mg) \hat{j} = -T \sin(\theta) \hat{i} - \frac{mg}{2} \hat{j}

The instantaneous acceleration in Case 2 is: a2=Fnet,2m=Tsin(θ)mi^g2j^\vec{a}_2 = \frac{\vec{F}_{net,2}}{m} = -\frac{T \sin(\theta)}{m} \hat{i} - \frac{g}{2} \hat{j}

Comparison of Accelerations: Since the springs and strings are ideal, and the geometry (mass, angle) is the same, the force in the left spring (FsF_s) and the tension in the left string (TT) are equal: Fs=T=mg2cos(θ)F_s = T = \frac{mg}{2 \cos(\theta)}

Substituting this into the acceleration expressions: a1=mg2cos(θ)sin(θ)mi^g2j^=gtan(θ)2i^g2j^\vec{a}_1 = -\frac{\frac{mg}{2 \cos(\theta)} \sin(\theta)}{m} \hat{i} - \frac{g}{2} \hat{j} = -\frac{g \tan(\theta)}{2} \hat{i} - \frac{g}{2} \hat{j} a2=mg2cos(θ)sin(θ)mi^g2j^=gtan(θ)2i^g2j^\vec{a}_2 = -\frac{\frac{mg}{2 \cos(\theta)} \sin(\theta)}{m} \hat{i} - \frac{g}{2} \hat{j} = -\frac{g \tan(\theta)}{2} \hat{i} - \frac{g}{2} \hat{j}

Thus, a1=a2\vec{a}_1 = \vec{a}_2. The instantaneous accelerations in both cases are identical vectors. The ratio of the magnitudes of the instantaneous accelerations is: a1a2=a1a1=1\frac{|\vec{a}_1|}{|\vec{a}_2|} = \frac{|\vec{a}_1|}{|\vec{a}_1|} = 1

Using θ=37\theta = 37^\circ, tan(37)0.75\tan(37^\circ) \approx 0.75: a1=a2=g×0.752i^g2j^=0.375gi^0.5gj^\vec{a}_1 = \vec{a}_2 = -\frac{g \times 0.75}{2} \hat{i} - \frac{g}{2} \hat{j} = -0.375g \hat{i} - 0.5g \hat{j} a1=a2=(0.375g)2+(0.5g)2=g0.140625+0.25=g0.390625=0.625g=58g|\vec{a}_1| = |\vec{a}_2| = \sqrt{(-0.375g)^2 + (-0.5g)^2} = g \sqrt{0.140625 + 0.25} = g \sqrt{0.390625} = 0.625g = \frac{5}{8}g. The ratio is 5g/85g/8=1\frac{5g/8}{5g/8} = 1.

The user's provided answer of 0 is incorrect. The ratio of the instantaneous accelerations is 1.