Question
Question: If x, y and z are real numbers that satisfy the three equations $\begin{cases} \tan(x) + \tan(y) + ...
If x, y and z are real numbers that satisfy the three equations
⎩⎨⎧tan(x)+tan(y)+tan(z)=6−(cot(x)+cot(y)+cot(z))tan2(x)+tan2(y)+tan2(z)=6−(cot2(x)+cot2(y)+cot2(z))tan3(x)+tan3(y)+tan3(z)=6−(cot3(x)+cot3(y)+cot3(z))
Find the value of the expression (tan(y)tan(x)+tan(z)tan(y)+tan(x)tan(z)+tan(x)tan(y)+tan(y)tan(z)+tan(z)tan(x)+3tan(x)tan(y)tan(z)).

9
Solution
Let a=tan(x), b=tan(y), and c=tan(z). Then cot(x)=a1, cot(y)=b1, and cot(z)=c1.
The given system of equations can be rewritten as:
- a+b+c=6−(a1+b1+c1)
- a2+b2+c2=6−(a21+b21+c21)
- a3+b3+c3=6−(a31+b31+c31)
Rearranging these equations by grouping terms:
- (a+a1)+(b+b1)+(c+c1)=6
- (a2+a21)+(b2+b21)+(c2+c21)=6
- (a3+a31)+(b3+b31)+(c3+c31)=6
Let's introduce new variables: u=a+a1 v=b+b1 w=c+c1
We know the following identities: t2+t21=(t+t1)2−2 t3+t31=(t+t1)3−3(t+t1)
Using these identities, the system of equations in terms of u,v,w becomes:
- u+v+w=6
- (u2−2)+(v2−2)+(w2−2)=6 u2+v2+w2−6=6 u2+v2+w2=12
- (u3−3u)+(v3−3v)+(w3−3w)=6 u3+v3+w3−3(u+v+w)=6 Substitute u+v+w=6 from the first equation: u3+v3+w3−3(6)=6 u3+v3+w3−18=6 u3+v3+w3=24
Now we have a system of equations for u,v,w: I. u+v+w=6 II. u2+v2+w2=12 III. u3+v3+w3=24
Let e1=u+v+w, e2=uv+vw+wu, and e3=uvw. From (I), e1=6.
We know that (u+v+w)2=u2+v2+w2+2(uv+vw+wu). Substitute values from (I) and (II): 62=12+2e2 36=12+2e2 2e2=24⟹e2=12.
Now, use the identity for the sum of cubes: u3+v3+w3−3uvw=(u+v+w)(u2+v2+w2−(uv+vw+wu)) Substitute values from (I), (II), (III), and the calculated e2: 24−3e3=(6)(12−12) 24−3e3=6⋅0 24−3e3=0 3e3=24⟹e3=8.
So, u,v,w are the roots of the cubic polynomial equation t3−e1t2+e2t−e3=0: t3−6t2+12t−8=0 This equation can be recognized as the expansion of (t−2)3: (t−2)3=t3−3(t2)(2)+3(t)(22)−23=t3−6t2+12t−8. Thus, (t−2)3=0, which implies t=2 is the only solution.
Therefore, u=2,v=2,w=2.
Now we substitute back to find a,b,c: u=a+a1=2 a2+1=2a a2−2a+1=0 (a−1)2=0⟹a=1.
Similarly, b+b1=2⟹b=1. And c+c1=2⟹c=1.
So, tan(x)=1, tan(y)=1, tan(z)=1.
Finally, we need to find the value of the expression: (tan(y)tan(x)+tan(z)tan(y)+tan(x)tan(z)+tan(x)tan(y)+tan(y)tan(z)+tan(z)tan(x)+3tan(x)tan(y)tan(z))
Substitute a=1,b=1,c=1 into the expression: (11+11+11+11+11+11+3(1)(1)(1)) =(1+1+1+1+1+1+3) =6+3 =9.
The final answer is 9.
Explanation of the solution:
- Transform the given equations using a=tanx,b=tany,c=tanz and their reciprocals.
- Define new variables u=a+a1, v=b+b1, w=c+c1.
- Rewrite the system in terms of u,v,w using identities for t2+t21 and t3+t31. This yields: u+v+w=6 u2+v2+w2=12 u3+v3+w3=24
- Recognize that u,v,w are roots of a cubic polynomial t3−e1t2+e2t−e3=0, where e1,e2,e3 are elementary symmetric polynomials.
- Calculate e1=6, e2=12, e3=8 using the sums of powers.
- Form the cubic equation t3−6t2+12t−8=0, which simplifies to (t−2)3=0.
- This implies u=v=w=2.
- Solve a+a1=2 to find a=1. Similarly, b=1 and c=1.
- Substitute a=1,b=1,c=1 into the target expression to get the final numerical value.