Solveeit Logo

Question

Question: If x, y and z are real numbers that satisfy the three equations $\begin{cases} \tan(x) + \tan(y) + ...

If x, y and z are real numbers that satisfy the three equations

{tan(x)+tan(y)+tan(z)=6(cot(x)+cot(y)+cot(z))tan2(x)+tan2(y)+tan2(z)=6(cot2(x)+cot2(y)+cot2(z))tan3(x)+tan3(y)+tan3(z)=6(cot3(x)+cot3(y)+cot3(z))\begin{cases} \tan(x) + \tan(y) + \tan(z) = 6 - (\cot(x) + \cot(y) + \cot(z)) \\ \tan^2(x) + \tan^2(y) + \tan^2(z) = 6 - (\cot^2(x) + \cot^2(y) + \cot^2(z)) \\ \tan^3(x) + \tan^3(y) + \tan^3(z) = 6 - (\cot^3(x) + \cot^3(y) + \cot^3(z)) \end{cases}

Find the value of the expression (tan(x)tan(y)+tan(y)tan(z)+tan(z)tan(x)+tan(y)tan(x)+tan(z)tan(y)+tan(x)tan(z)+3tan(x)tan(y)tan(z))(\frac{\tan(x)}{\tan(y)} + \frac{\tan(y)}{\tan(z)} + \frac{\tan(z)}{\tan(x)} + \frac{\tan(y)}{\tan(x)} + \frac{\tan(z)}{\tan(y)} + \frac{\tan(x)}{\tan(z)} + 3\tan(x)\tan(y)\tan(z)).

Answer

9

Explanation

Solution

Let a=tan(x)a = \tan(x), b=tan(y)b = \tan(y), and c=tan(z)c = \tan(z). Then cot(x)=1a\cot(x) = \frac{1}{a}, cot(y)=1b\cot(y) = \frac{1}{b}, and cot(z)=1c\cot(z) = \frac{1}{c}.

The given system of equations can be rewritten as:

  1. a+b+c=6(1a+1b+1c)a + b + c = 6 - (\frac{1}{a} + \frac{1}{b} + \frac{1}{c})
  2. a2+b2+c2=6(1a2+1b2+1c2)a^2 + b^2 + c^2 = 6 - (\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2})
  3. a3+b3+c3=6(1a3+1b3+1c3)a^3 + b^3 + c^3 = 6 - (\frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3})

Rearranging these equations by grouping terms:

  1. (a+1a)+(b+1b)+(c+1c)=6(a + \frac{1}{a}) + (b + \frac{1}{b}) + (c + \frac{1}{c}) = 6
  2. (a2+1a2)+(b2+1b2)+(c2+1c2)=6(a^2 + \frac{1}{a^2}) + (b^2 + \frac{1}{b^2}) + (c^2 + \frac{1}{c^2}) = 6
  3. (a3+1a3)+(b3+1b3)+(c3+1c3)=6(a^3 + \frac{1}{a^3}) + (b^3 + \frac{1}{b^3}) + (c^3 + \frac{1}{c^3}) = 6

Let's introduce new variables: u=a+1au = a + \frac{1}{a} v=b+1bv = b + \frac{1}{b} w=c+1cw = c + \frac{1}{c}

We know the following identities: t2+1t2=(t+1t)22t^2 + \frac{1}{t^2} = (t + \frac{1}{t})^2 - 2 t3+1t3=(t+1t)33(t+1t)t^3 + \frac{1}{t^3} = (t + \frac{1}{t})^3 - 3(t + \frac{1}{t})

Using these identities, the system of equations in terms of u,v,wu, v, w becomes:

  1. u+v+w=6u + v + w = 6
  2. (u22)+(v22)+(w22)=6(u^2 - 2) + (v^2 - 2) + (w^2 - 2) = 6 u2+v2+w26=6u^2 + v^2 + w^2 - 6 = 6 u2+v2+w2=12u^2 + v^2 + w^2 = 12
  3. (u33u)+(v33v)+(w33w)=6(u^3 - 3u) + (v^3 - 3v) + (w^3 - 3w) = 6 u3+v3+w33(u+v+w)=6u^3 + v^3 + w^3 - 3(u + v + w) = 6 Substitute u+v+w=6u+v+w=6 from the first equation: u3+v3+w33(6)=6u^3 + v^3 + w^3 - 3(6) = 6 u3+v3+w318=6u^3 + v^3 + w^3 - 18 = 6 u3+v3+w3=24u^3 + v^3 + w^3 = 24

Now we have a system of equations for u,v,wu, v, w: I. u+v+w=6u + v + w = 6 II. u2+v2+w2=12u^2 + v^2 + w^2 = 12 III. u3+v3+w3=24u^3 + v^3 + w^3 = 24

Let e1=u+v+we_1 = u+v+w, e2=uv+vw+wue_2 = uv+vw+wu, and e3=uvwe_3 = uvw. From (I), e1=6e_1 = 6.

We know that (u+v+w)2=u2+v2+w2+2(uv+vw+wu)(u+v+w)^2 = u^2+v^2+w^2 + 2(uv+vw+wu). Substitute values from (I) and (II): 62=12+2e26^2 = 12 + 2e_2 36=12+2e236 = 12 + 2e_2 2e2=24    e2=122e_2 = 24 \implies e_2 = 12.

Now, use the identity for the sum of cubes: u3+v3+w33uvw=(u+v+w)(u2+v2+w2(uv+vw+wu))u^3+v^3+w^3 - 3uvw = (u+v+w)(u^2+v^2+w^2 - (uv+vw+wu)) Substitute values from (I), (II), (III), and the calculated e2e_2: 243e3=(6)(1212)24 - 3e_3 = (6)(12 - 12) 243e3=6024 - 3e_3 = 6 \cdot 0 243e3=024 - 3e_3 = 0 3e3=24    e3=83e_3 = 24 \implies e_3 = 8.

So, u,v,wu, v, w are the roots of the cubic polynomial equation t3e1t2+e2te3=0t^3 - e_1 t^2 + e_2 t - e_3 = 0: t36t2+12t8=0t^3 - 6t^2 + 12t - 8 = 0 This equation can be recognized as the expansion of (t2)3(t-2)^3: (t2)3=t33(t2)(2)+3(t)(22)23=t36t2+12t8(t-2)^3 = t^3 - 3(t^2)(2) + 3(t)(2^2) - 2^3 = t^3 - 6t^2 + 12t - 8. Thus, (t2)3=0(t-2)^3 = 0, which implies t=2t=2 is the only solution.

Therefore, u=2,v=2,w=2u=2, v=2, w=2.

Now we substitute back to find a,b,ca, b, c: u=a+1a=2u = a + \frac{1}{a} = 2 a2+1=2aa^2 + 1 = 2a a22a+1=0a^2 - 2a + 1 = 0 (a1)2=0    a=1(a-1)^2 = 0 \implies a=1.

Similarly, b+1b=2    b=1b + \frac{1}{b} = 2 \implies b=1. And c+1c=2    c=1c + \frac{1}{c} = 2 \implies c=1.

So, tan(x)=1\tan(x) = 1, tan(y)=1\tan(y) = 1, tan(z)=1\tan(z) = 1.

Finally, we need to find the value of the expression: (tan(x)tan(y)+tan(y)tan(z)+tan(z)tan(x)+tan(y)tan(x)+tan(z)tan(y)+tan(x)tan(z)+3tan(x)tan(y)tan(z))(\frac{\tan(x)}{\tan(y)} + \frac{\tan(y)}{\tan(z)} + \frac{\tan(z)}{\tan(x)} + \frac{\tan(y)}{\tan(x)} + \frac{\tan(z)}{\tan(y)} + \frac{\tan(x)}{\tan(z)} + 3\tan(x)\tan(y)\tan(z))

Substitute a=1,b=1,c=1a=1, b=1, c=1 into the expression: (11+11+11+11+11+11+3(1)(1)(1))(\frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + 3(1)(1)(1)) =(1+1+1+1+1+1+3)= (1 + 1 + 1 + 1 + 1 + 1 + 3) =6+3= 6 + 3 =9= 9.

The final answer is 9\boxed{9}.

Explanation of the solution:

  1. Transform the given equations using a=tanx,b=tany,c=tanza=\tan x, b=\tan y, c=\tan z and their reciprocals.
  2. Define new variables u=a+1au = a + \frac{1}{a}, v=b+1bv = b + \frac{1}{b}, w=c+1cw = c + \frac{1}{c}.
  3. Rewrite the system in terms of u,v,wu, v, w using identities for t2+1t2t^2+\frac{1}{t^2} and t3+1t3t^3+\frac{1}{t^3}. This yields: u+v+w=6u+v+w=6 u2+v2+w2=12u^2+v^2+w^2=12 u3+v3+w3=24u^3+v^3+w^3=24
  4. Recognize that u,v,wu,v,w are roots of a cubic polynomial t3e1t2+e2te3=0t^3 - e_1 t^2 + e_2 t - e_3 = 0, where e1,e2,e3e_1, e_2, e_3 are elementary symmetric polynomials.
  5. Calculate e1=6e_1=6, e2=12e_2=12, e3=8e_3=8 using the sums of powers.
  6. Form the cubic equation t36t2+12t8=0t^3 - 6t^2 + 12t - 8 = 0, which simplifies to (t2)3=0(t-2)^3 = 0.
  7. This implies u=v=w=2u=v=w=2.
  8. Solve a+1a=2a + \frac{1}{a} = 2 to find a=1a=1. Similarly, b=1b=1 and c=1c=1.
  9. Substitute a=1,b=1,c=1a=1, b=1, c=1 into the target expression to get the final numerical value.