Question
Question: \lim_{x\to 0^+} \left(\frac{(1+x)^{\frac{1}{x}}}{e}\right)^{\frac{1}{x}} =...
\lim_{x\to 0^+} \left(\frac{(1+x)^{\frac{1}{x}}}{e}\right)^{\frac{1}{x}} =

Answer
e^{-1/2}
Explanation
Solution
Let the limit be L. L=limx→0+(e(1+x)x1)x1 We can rewrite the expression as: L=limx→0+exp(x1ln(e(1+x)x1)) L=limx→0+exp(x1(x1ln(1+x)−ln(e))) L=limx→0+exp(x2ln(1+x)−x) Now we evaluate the limit of the exponent using L'Hopital's Rule: limx→0+x2ln(1+x)−x This is of the form 00. Applying L'Hopital's Rule: limx→0+2x1+x1−1=limx→0+2x1+x1−(1+x)=limx→0+2x(1+x)−x =limx→0+2(1+x)−1=−21 Therefore, L=e−1/2.
