Solveeit Logo

Question

Question: \lim_{x\to 0^+} \left(\frac{(1+x)^{\frac{1}{x}}}{e}\right)^{\frac{1}{x}} =...

\lim_{x\to 0^+} \left(\frac{(1+x)^{\frac{1}{x}}}{e}\right)^{\frac{1}{x}} =

Answer

e^{-1/2}

Explanation

Solution

Let the limit be LL. L=limx0+((1+x)1xe)1xL = \lim_{x\to 0^+} \left(\frac{(1+x)^{\frac{1}{x}}}{e}\right)^{\frac{1}{x}} We can rewrite the expression as: L=limx0+exp(1xln((1+x)1xe))L = \lim_{x\to 0^+} \exp\left( \frac{1}{x} \ln\left(\frac{(1+x)^{\frac{1}{x}}}{e}\right) \right) L=limx0+exp(1x(1xln(1+x)ln(e)))L = \lim_{x\to 0^+} \exp\left( \frac{1}{x} \left( \frac{1}{x}\ln(1+x) - \ln(e) \right) \right) L=limx0+exp(ln(1+x)xx2)L = \lim_{x\to 0^+} \exp\left( \frac{\ln(1+x) - x}{x^2} \right) Now we evaluate the limit of the exponent using L'Hopital's Rule: limx0+ln(1+x)xx2\lim_{x\to 0^+} \frac{\ln(1+x) - x}{x^2} This is of the form 00\frac{0}{0}. Applying L'Hopital's Rule: limx0+11+x12x=limx0+1(1+x)1+x2x=limx0+x2x(1+x)\lim_{x\to 0^+} \frac{\frac{1}{1+x} - 1}{2x} = \lim_{x\to 0^+} \frac{\frac{1 - (1+x)}{1+x}}{2x} = \lim_{x\to 0^+} \frac{-x}{2x(1+x)} =limx0+12(1+x)=12= \lim_{x\to 0^+} \frac{-1}{2(1+x)} = -\frac{1}{2} Therefore, L=e1/2L = e^{-1/2}.