Solveeit Logo

Question

Question: Let $\vec{a} = 2\hat{i} + \hat{j} - \hat{k}$, $\vec{b} = 3\hat{i} + \hat{j} + 6\hat{k}$, $\vec{c} = ...

Let a=2i^+j^k^\vec{a} = 2\hat{i} + \hat{j} - \hat{k}, b=3i^+j^+6k^\vec{b} = 3\hat{i} + \hat{j} + 6\hat{k}, c=i^j^k^\vec{c} = \hat{i} - \hat{j} - \hat{k} be three vectors. If a vector x\vec{x} satisfies x×b=b×c\vec{x} \times \vec{b} = \vec{b} \times \vec{c} and x.a=0\vec{x} . \vec{a} = 0, then

x.(i^j^+k^)=\vec{x} . (\hat{i} - \hat{j} + \hat{k}) =

A

15

B

10

C

20

D

25

Answer

15

Explanation

Solution

The condition x×b=b×c\vec{x} \times \vec{b} = \vec{b} \times \vec{c} can be rewritten as (x+c)×b=0(\vec{x} + \vec{c}) \times \vec{b} = \vec{0}. This implies that x+c\vec{x} + \vec{c} is parallel to b\vec{b}, so x+c=λb\vec{x} + \vec{c} = \lambda \vec{b} for some scalar λ\lambda. Thus, x=λbc\vec{x} = \lambda \vec{b} - \vec{c}.

Substituting this into the second condition, x.a=0\vec{x} . \vec{a} = 0, we get (λbc).a=0(\lambda \vec{b} - \vec{c}) . \vec{a} = 0, which expands to λ(b.a)(c.a)=0\lambda (\vec{b} . \vec{a}) - (\vec{c} . \vec{a}) = 0.

Calculating the dot products: b.a=(3)(2)+(1)(1)+(6)(1)=6+16=1\vec{b} . \vec{a} = (3)(2) + (1)(1) + (6)(-1) = 6 + 1 - 6 = 1 c.a=(1)(2)+(1)(1)+(1)(1)=21+1=2\vec{c} . \vec{a} = (1)(2) + (-1)(1) + (-1)(-1) = 2 - 1 + 1 = 2

Substituting these values into the equation for λ\lambda: λ(1)2=0    λ=2\lambda (1) - 2 = 0 \implies \lambda = 2.

Now we find x\vec{x}: x=2bc=2(3i^+j^+6k^)(i^j^k^)\vec{x} = 2\vec{b} - \vec{c} = 2(3\hat{i} + \hat{j} + 6\hat{k}) - (\hat{i} - \hat{j} - \hat{k}) x=(6i^+2j^+12k^)(i^j^k^)\vec{x} = (6\hat{i} + 2\hat{j} + 12\hat{k}) - (\hat{i} - \hat{j} - \hat{k}) x=5i^+3j^+13k^\vec{x} = 5\hat{i} + 3\hat{j} + 13\hat{k}

Finally, we calculate x.(i^j^+k^)\vec{x} . (\hat{i} - \hat{j} + \hat{k}): x.(i^j^+k^)=(5i^+3j^+13k^).(i^j^+k^)\vec{x} . (\hat{i} - \hat{j} + \hat{k}) = (5\hat{i} + 3\hat{j} + 13\hat{k}) . (\hat{i} - \hat{j} + \hat{k}) =(5)(1)+(3)(1)+(13)(1)=53+13=15= (5)(1) + (3)(-1) + (13)(1) = 5 - 3 + 13 = 15.