Question
Question: Let $\vec{a} = 2\hat{i} + \hat{j} - \hat{k}$, $\vec{b} = 3\hat{i} + \hat{j} + 6\hat{k}$, $\vec{c} = ...
Let a=2i^+j^−k^, b=3i^+j^+6k^, c=i^−j^−k^ be three vectors. If a vector x satisfies x×b=b×c and x.a=0, then
x.(i^−j^+k^)=

A
15
B
10
C
20
D
25
Answer
15
Explanation
Solution
The condition x×b=b×c can be rewritten as (x+c)×b=0. This implies that x+c is parallel to b, so x+c=λb for some scalar λ. Thus, x=λb−c.
Substituting this into the second condition, x.a=0, we get (λb−c).a=0, which expands to λ(b.a)−(c.a)=0.
Calculating the dot products: b.a=(3)(2)+(1)(1)+(6)(−1)=6+1−6=1 c.a=(1)(2)+(−1)(1)+(−1)(−1)=2−1+1=2
Substituting these values into the equation for λ: λ(1)−2=0⟹λ=2.
Now we find x: x=2b−c=2(3i^+j^+6k^)−(i^−j^−k^) x=(6i^+2j^+12k^)−(i^−j^−k^) x=5i^+3j^+13k^
Finally, we calculate x.(i^−j^+k^): x.(i^−j^+k^)=(5i^+3j^+13k^).(i^−j^+k^) =(5)(1)+(3)(−1)+(13)(1)=5−3+13=15.