Solveeit Logo

Question

Question: $\int \sqrt{\frac{x}{1-x^3}}dx$...

x1x3dx\int \sqrt{\frac{x}{1-x^3}}dx

Answer

23arcsin(x3/2)+C\frac{2}{3} \arcsin(x^{3/2}) + C

Explanation

Solution

The problem asks to evaluate the indefinite integral x1x3dx\int \sqrt{\frac{x}{1-x^3}}dx.

Explanation of the solution:

  1. Rewrite the integrand: The integrand is x1x3\sqrt{\frac{x}{1-x^3}}. This can be written as x1x3\frac{\sqrt{x}}{\sqrt{1-x^3}}. Notice that the term x3x^3 in the denominator can be expressed as (x3/2)2(x^{3/2})^2. So, the integral becomes x1(x3/2)2dx\int \frac{\sqrt{x}}{\sqrt{1-(x^{3/2})^2}} dx.

  2. Choose a substitution: The form f(x)1(f(x))2\frac{f'(x)}{\sqrt{1-(f(x))^2}} suggests using the substitution u=f(x)u = f(x), which leads to an integral of the form 11u2du=arcsinu+C\int \frac{1}{\sqrt{1-u^2}}du = \arcsin u + C. Let u=x3/2u = x^{3/2}.

  3. Calculate dudu: Differentiate uu with respect to xx: du=ddx(x3/2)dxdu = \frac{d}{dx}(x^{3/2}) dx du=32x3/21dxdu = \frac{3}{2} x^{3/2 - 1} dx du=32x1/2dxdu = \frac{3}{2} x^{1/2} dx du=32xdxdu = \frac{3}{2} \sqrt{x} dx

  4. Express xdx\sqrt{x} dx in terms of dudu: From the expression for dudu, we can write: xdx=23du\sqrt{x} dx = \frac{2}{3} du.

  5. Substitute into the integral: Substitute u=x3/2u = x^{3/2} and xdx=23du\sqrt{x} dx = \frac{2}{3} du into the integral: 11(x3/2)2xdx=11u223du\int \frac{1}{\sqrt{1-(x^{3/2})^2}} \cdot \sqrt{x} dx = \int \frac{1}{\sqrt{1-u^2}} \cdot \frac{2}{3} du

  6. Evaluate the integral: Take the constant 23\frac{2}{3} outside the integral: =2311u2du= \frac{2}{3} \int \frac{1}{\sqrt{1-u^2}} du Recall the standard integral formula: 11y2dy=arcsiny+C\int \frac{1}{\sqrt{1-y^2}} dy = \arcsin y + C. Applying this formula, we get: =23arcsinu+C= \frac{2}{3} \arcsin u + C

  7. Substitute back to the original variable: Replace uu with x3/2x^{3/2}: =23arcsin(x3/2)+C= \frac{2}{3} \arcsin(x^{3/2}) + C

The domain of the integrand requires x0x \ge 0 and 1x3>01-x^3 > 0, which means 0x<10 \le x < 1. This ensures that x3/2x^{3/2} is in the range [0,1)[0, 1), for which arcsin(x3/2)\arcsin(x^{3/2}) is well-defined.