Solveeit Logo

Question

Question: The value of $\cos(18^\circ - A) \cos(18^\circ + A) - \cos(72^\circ - A) \cos(72^\circ + A)$ is equa...

The value of cos(18A)cos(18+A)cos(72A)cos(72+A)\cos(18^\circ - A) \cos(18^\circ + A) - \cos(72^\circ - A) \cos(72^\circ + A) is equal to

A

cos54\cos 54^\circ

B

cos36\cos 36^\circ

C

sin54\sin 54^\circ

D

sin36\sin 36^\circ

Answer

cos36\cos 36^\circ

Explanation

Solution

Using the product-to-sum formula:

cos(18A)cos(18+A)=cos218sin2A\cos(18^\circ - A)\cos(18^\circ + A) = \cos^2 18^\circ - \sin^2 A

and similarly,

cos(72A)cos(72+A)=cos272sin2A.\cos(72^\circ - A)\cos(72^\circ + A) = \cos^2 72^\circ - \sin^2 A.

Subtracting the two:

[cos218sin2A][cos272sin2A]=cos218cos272.[\cos^2 18^\circ - \sin^2 A] - [\cos^2 72^\circ - \sin^2 A] = \cos^2 18^\circ - \cos^2 72^\circ.

Noting that cos72=sin18\cos 72^\circ = \sin 18^\circ, we have:

cos218cos272=cos218sin218=cos36,\cos^2 18^\circ - \cos^2 72^\circ = \cos^2 18^\circ - \sin^2 18^\circ = \cos 36^\circ,

where the last equality follows from the double angle formula cos2θ=cos2θsin2θ\cos 2\theta = \cos^2\theta - \sin^2\theta (with θ=18\theta = 18^\circ).