Question
Question: The value of $\cos(18^\circ - A) \cos(18^\circ + A) - \cos(72^\circ - A) \cos(72^\circ + A)$ is equa...
The value of cos(18∘−A)cos(18∘+A)−cos(72∘−A)cos(72∘+A) is equal to

A
cos54∘
B
cos36∘
C
sin54∘
D
sin36∘
Answer
cos36∘
Explanation
Solution
Using the product-to-sum formula:
cos(18∘−A)cos(18∘+A)=cos218∘−sin2Aand similarly,
cos(72∘−A)cos(72∘+A)=cos272∘−sin2A.Subtracting the two:
[cos218∘−sin2A]−[cos272∘−sin2A]=cos218∘−cos272∘.Noting that cos72∘=sin18∘, we have:
cos218∘−cos272∘=cos218∘−sin218∘=cos36∘,where the last equality follows from the double angle formula cos2θ=cos2θ−sin2θ (with θ=18∘).