Solveeit Logo

Question

Question: If $2x + 3y + 4z = 0$, then prove that: $8x^3 + 27y^3 + 64z^3 = 72xyz$...

If 2x+3y+4z=02x + 3y + 4z = 0, then prove that:

8x3+27y3+64z3=72xyz8x^3 + 27y^3 + 64z^3 = 72xyz

Answer

Given 2x+3y+4z=02x + 3y + 4z = 0, we can prove that 8x3+27y3+64z3=72xyz8x^3 + 27y^3 + 64z^3 = 72xyz using the identity: if a+b+c=0a+b+c=0, then a3+b3+c3=3abca^3+b^3+c^3 = 3abc. Let a=2xa = 2x, b=3yb = 3y, c=4zc = 4z. Then the condition becomes a+b+c=0a+b+c = 0. Substituting a=2x,b=3y,c=4za=2x, b=3y, c=4z into the identity, we get (2x)3+(3y)3+(4z)3=3(2x)(3y)(4z)(2x)^3 + (3y)^3 + (4z)^3 = 3(2x)(3y)(4z), which simplifies to 8x3+27y3+64z3=72xyz8x^3 + 27y^3 + 64z^3 = 72xyz.

Explanation

Solution

Given the condition 2x+3y+4z=02x + 3y + 4z = 0, we aim to prove that 8x3+27y3+64z3=72xyz8x^3 + 27y^3 + 64z^3 = 72xyz.

Let a=2xa = 2x, b=3yb = 3y, and c=4zc = 4z. Then the given condition 2x+3y+4z=02x + 3y + 4z = 0 can be rewritten as:

a+b+c=0a + b + c = 0

We will use the algebraic identity that states if the sum of three terms is zero, then the sum of their cubes is equal to three times their product:

If a+b+c=0a + b + c = 0, then a3+b3+c3=3abca^3 + b^3 + c^3 = 3abc.

Since a+b+c=0a + b + c = 0, we can apply this identity:

a3+b3+c3=3abca^3 + b^3 + c^3 = 3abc

Now, substitute back the expressions for a,b,ca, b, c in terms of x,y,zx, y, z:

(2x)3+(3y)3+(4z)3=3(2x)(3y)(4z)(2x)^3 + (3y)^3 + (4z)^3 = 3(2x)(3y)(4z)

Calculate the cubes and the product:

(2x)3=8x3(2x)^3 = 8x^3

(3y)3=27y3(3y)^3 = 27y^3

(4z)3=64z3(4z)^3 = 64z^3

3(2x)(3y)(4z)=72xyz3(2x)(3y)(4z) = 72xyz

Substituting these back into the identity a3+b3+c3=3abca^3 + b^3 + c^3 = 3abc:

8x3+27y3+64z3=72xyz8x^3 + 27y^3 + 64z^3 = 72xyz

Thus, the identity is proven.