Solveeit Logo

Question

Question: $f(x)$ be a real values function defined on the interval [-2, 2] as follows $\qquad \begin{cases} ...

f(x)f(x) be a real values function defined on the interval [-2, 2] as follows

{1if2x1f(x)={x+2if1<x<11xif1x2\qquad \begin{cases} \qquad 1 \qquad \text{if} \quad -2 \le x \le -1 \\ f(x)= \begin{cases} \qquad x+2 \qquad \text{if} \quad -1 < x < 1 \\ \qquad 1-x \qquad \text{if} \quad 1 \le x \le 2 \end{cases} \end{cases}

then number of solutions of the equation {f(x)}=12\{f(x)\} = \frac{1}{2} is, (where {f(x)}\{f(x)\} \rightarrow denotes fractional part of f(x)f(x))

Answer

3

Explanation

Solution

The equation to solve is {f(x)}=12\{f(x)\} = \frac{1}{2}, where {y}\{y\} denotes the fractional part of yy. The expression {y}=12\{y\} = \frac{1}{2} implies that yy must be of the form n+12n + \frac{1}{2} for some integer nn. So, we need to find the values of xx for which f(x)=n+12f(x) = n + \frac{1}{2} for some integer nn.

We analyze the function f(x)f(x) in each of its defined intervals:

Case 1: 2x1-2 \le x \le -1 In this interval, f(x)=1f(x) = 1. We need {f(x)}={1}=0\{f(x)\} = \{1\} = 0. Since 0120 \ne \frac{1}{2}, there are no solutions in this interval.

Case 2: 1<x<1-1 < x < 1 In this interval, f(x)=x+2f(x) = x+2. As xx ranges from 1-1 (exclusive) to 11 (exclusive): When x1+x \to -1^+, f(x)(1+2)+=1+f(x) \to (-1+2)^+ = 1^+. When x1x \to 1^-, f(x)(1+2)=3f(x) \to (1+2)^- = 3^-. So, the range of f(x)f(x) in this interval is (1,3)(1, 3).

We need f(x)=n+12f(x) = n + \frac{1}{2} where nn is an integer and 1<f(x)<31 < f(x) < 3. Possible values for nn:

  • If n=1n=1, f(x)=1+12=32f(x) = 1 + \frac{1}{2} = \frac{3}{2}. This value lies in (1,3)(1, 3). Setting x+2=32    x=322=12x+2 = \frac{3}{2} \implies x = \frac{3}{2} - 2 = -\frac{1}{2}. This value x=12x = -\frac{1}{2} is within the interval (1,1)(-1, 1). So, x=12x = -\frac{1}{2} is a solution.
  • If n=2n=2, f(x)=2+12=52f(x) = 2 + \frac{1}{2} = \frac{5}{2}. This value lies in (1,3)(1, 3). Setting x+2=52    x=522=12x+2 = \frac{5}{2} \implies x = \frac{5}{2} - 2 = \frac{1}{2}. This value x=12x = \frac{1}{2} is within the interval (1,1)(-1, 1). So, x=12x = \frac{1}{2} is a solution.
  • For any other integer nn (e.g., n=0    f(x)=1/2n=0 \implies f(x)=1/2, or n=3    f(x)=7/2n=3 \implies f(x)=7/2), n+12n+\frac{1}{2} would not fall within the range (1,3)(1, 3).

Thus, there are 2 solutions in the interval (1,1)(-1, 1).

Case 3: 1x21 \le x \le 2 In this interval, f(x)=1xf(x) = 1-x. As xx ranges from 11 (inclusive) to 22 (inclusive): When x=1x=1, f(x)=11=0f(x) = 1-1 = 0. When x=2x=2, f(x)=12=1f(x) = 1-2 = -1. So, the range of f(x)f(x) in this interval is [1,0][-1, 0].

We need f(x)=n+12f(x) = n + \frac{1}{2} where nn is an integer and 1f(x)0-1 \le f(x) \le 0. Possible values for nn:

  • If n=1n=-1, f(x)=1+12=12f(x) = -1 + \frac{1}{2} = -\frac{1}{2}. This value lies in [1,0][-1, 0]. Setting 1x=12    x=1+12=321-x = -\frac{1}{2} \implies x = 1 + \frac{1}{2} = \frac{3}{2}. This value x=32x = \frac{3}{2} is within the interval [1,2][1, 2]. So, x=32x = \frac{3}{2} is a solution.
  • For any other integer nn (e.g., n=0    f(x)=1/2n=0 \implies f(x)=1/2, or n=2    f(x)=3/2n=-2 \implies f(x)=-3/2), n+12n+\frac{1}{2} would not fall within the range [1,0][-1, 0].

Thus, there is 1 solution in the interval [1,2][1, 2].

Total Number of Solutions: Summing the solutions from all intervals: 0+2+1=30 + 2 + 1 = 3. The solutions are x=12x = -\frac{1}{2}, x=12x = \frac{1}{2}, and x=32x = \frac{3}{2}.