Solveeit Logo

Question

Question: If P = $\begin{bmatrix} 1 & k & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4 \end{bmatrix}$ is the adjoint of a 3 × 3...

If P = [1k3133244]\begin{bmatrix} 1 & k & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4 \end{bmatrix} is the adjoint of a 3 × 3 matrix Q and det.(Q) = 6, then k is equal to

A

21

B

18

C

36

D

42

Answer

21

Explanation

Solution

Let P be the given matrix and Q be a 3 × 3 matrix such that P = adj(Q). We are given that det(Q) = 6.

For an n×nn \times n matrix Q, the determinant of its adjoint is given by the property:

det(adj(Q))=(det(Q))n1\det(\text{adj}(Q)) = (\det(Q))^{n-1}

In this case, Q is a 3 × 3 matrix, so n = 3. Given P = adj(Q), we have det(P)=det(adj(Q))\det(P) = \det(\text{adj}(Q)). Using the property, det(P)=(det(Q))31=(det(Q))2\det(P) = (\det(Q))^{3-1} = (\det(Q))^2. Given det(Q)=6\det(Q) = 6, we have det(P)=62=36\det(P) = 6^2 = 36.

Now, we calculate the determinant of the matrix P in terms of k: P=[1k3133244]P = \begin{bmatrix} 1 & k & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4 \end{bmatrix}

det(P)=13344k1324+31324\det(P) = 1 \begin{vmatrix} 3 & 3 \\ 4 & 4 \end{vmatrix} - k \begin{vmatrix} 1 & 3 \\ 2 & 4 \end{vmatrix} + 3 \begin{vmatrix} 1 & 3 \\ 2 & 4 \end{vmatrix}

det(P)=1((3×4)(3×4))k((1×4)(3×2))+3((1×4)(3×2))\det(P) = 1((3 \times 4) - (3 \times 4)) - k((1 \times 4) - (3 \times 2)) + 3((1 \times 4) - (3 \times 2))

det(P)=1(1212)k(46)+3(46)\det(P) = 1(12 - 12) - k(4 - 6) + 3(4 - 6)

det(P)=1(0)k(2)+3(2)\det(P) = 1(0) - k(-2) + 3(-2)

det(P)=0+2k6\det(P) = 0 + 2k - 6

det(P)=2k6\det(P) = 2k - 6

We have two expressions for det(P)\det(P): det(P)=36\det(P) = 36 and det(P)=2k6\det(P) = 2k - 6.

Equating these two expressions:

2k6=362k - 6 = 36

2k=36+62k = 36 + 6

2k=422k = 42

k=422k = \frac{42}{2}

k=21k = 21

Thus, the value of k is 21.