Solveeit Logo

Question

Question: find value(s) of 'm' for which Q.E $3x^2+4mx+2=0$ and $2x^2+5x-2=0$ have a common root....

find value(s) of 'm' for which Q.E 3x2+4mx+2=03x^2+4mx+2=0 and 2x2+5x2=02x^2+5x-2=0 have a common root.

Answer

The values of m are 5(1+41)16,5(141)16\frac{5(1 + \sqrt{41})}{16}, \frac{5(1 - \sqrt{41})}{16}.

Explanation

Solution

Let the common root be α\alpha. The two equations are 3α2+4mα+2=03\alpha^2 + 4m\alpha + 2 = 0 and 2α2+5α2=02\alpha^2 + 5\alpha - 2 = 0. Using the condition (c1a2c2a1)2=(a1b2a2b1)(b1c2b2c1)(c_1a_2 - c_2a_1)^2 = (a_1b_2 - a_2b_1)(b_1c_2 - b_2c_1), with a1=3,b1=4m,c1=2a_1=3, b_1=4m, c_1=2 and a2=2,b2=5,c2=2a_2=2, b_2=5, c_2=-2, we get (10)2=(158m)(8m10)(10)^2 = (15-8m)(-8m-10). This simplifies to 100=64m240m150100 = 64m^2 - 40m - 150, leading to the quadratic equation 32m220m125=032m^2 - 20m - 125 = 0. Solving this equation for mm yields m=5(1±41)16m = \frac{5(1 \pm \sqrt{41})}{16}.