Question
Question: Prove that $(\csc \theta + \sin \theta)(\csc \theta - \sin \theta) = \cot^2 \theta + \cos^2 \theta$...
Prove that (cscθ+sinθ)(cscθ−sinθ)=cot2θ+cos2θ

The identity (cscθ+sinθ)(cscθ−sinθ)=cot2θ+cos2θ is proven.
Solution
To prove the identity (cscθ+sinθ)(cscθ−sinθ)=cot2θ+cos2θ, we start with the Left Hand Side (LHS) and manipulate it using fundamental trigonometric identities.
-
Apply the difference of squares formula: The LHS is in the form (a+b)(a−b), where a=cscθ and b=sinθ. Using the formula (a+b)(a−b)=a2−b2: LHS=(cscθ+sinθ)(cscθ−sinθ)=csc2θ−sin2θ
-
Use Pythagorean Identities: We use the Pythagorean identities:
- csc2θ=1+cot2θ
- sin2θ=1−cos2θ
Substitute these into the expression for LHS: LHS=(1+cot2θ)−(1−cos2θ)
-
Simplify the expression: Remove the parentheses and combine like terms: LHS=1+cot2θ−1+cos2θ LHS=cot2θ+cos2θ
This result is identical to the Right Hand Side (RHS). Therefore, the identity is proven.