Solveeit Logo

Question

Question: Prove that $(\csc \theta + \sin \theta)(\csc \theta - \sin \theta) = \cot^2 \theta + \cos^2 \theta$...

Prove that (cscθ+sinθ)(cscθsinθ)=cot2θ+cos2θ(\csc \theta + \sin \theta)(\csc \theta - \sin \theta) = \cot^2 \theta + \cos^2 \theta

Answer

The identity (cscθ+sinθ)(cscθsinθ)=cot2θ+cos2θ(\csc \theta + \sin \theta)(\csc \theta - \sin \theta) = \cot^2 \theta + \cos^2 \theta is proven.

Explanation

Solution

To prove the identity (cscθ+sinθ)(cscθsinθ)=cot2θ+cos2θ(\csc \theta + \sin \theta)(\csc \theta - \sin \theta) = \cot^2 \theta + \cos^2 \theta, we start with the Left Hand Side (LHS) and manipulate it using fundamental trigonometric identities.

  1. Apply the difference of squares formula: The LHS is in the form (a+b)(ab)(a+b)(a-b), where a=cscθa = \csc \theta and b=sinθb = \sin \theta. Using the formula (a+b)(ab)=a2b2(a+b)(a-b) = a^2 - b^2: LHS=(cscθ+sinθ)(cscθsinθ)=csc2θsin2θ\text{LHS} = (\csc \theta + \sin \theta)(\csc \theta - \sin \theta) = \csc^2 \theta - \sin^2 \theta

  2. Use Pythagorean Identities: We use the Pythagorean identities:

    • csc2θ=1+cot2θ\csc^2 \theta = 1 + \cot^2 \theta
    • sin2θ=1cos2θ\sin^2 \theta = 1 - \cos^2 \theta

    Substitute these into the expression for LHS: LHS=(1+cot2θ)(1cos2θ)\text{LHS} = (1 + \cot^2 \theta) - (1 - \cos^2 \theta)

  3. Simplify the expression: Remove the parentheses and combine like terms: LHS=1+cot2θ1+cos2θ\text{LHS} = 1 + \cot^2 \theta - 1 + \cos^2 \theta LHS=cot2θ+cos2θ\text{LHS} = \cot^2 \theta + \cos^2 \theta

This result is identical to the Right Hand Side (RHS). Therefore, the identity is proven.