Solveeit Logo

Question

Question: Prove $\frac{sin \theta}{(1+cos \theta)} + \frac{(1+cos \theta)}{sin \theta} = 2 cosec \theta$...

Prove sinθ(1+cosθ)+(1+cosθ)sinθ=2cosecθ\frac{sin \theta}{(1+cos \theta)} + \frac{(1+cos \theta)}{sin \theta} = 2 cosec \theta

Answer

The identity sinθ(1+cosθ)+(1+cosθ)sinθ=2cscθ\frac{\sin \theta}{(1+\cos \theta)} + \frac{(1+\cos \theta)}{\sin \theta} = 2 \csc \theta is proven to be true.

Explanation

Solution

Combine fractions on LHS. Simplify numerator using sin2θ+cos2θ=1\sin^2\theta + \cos^2\theta = 1 to get 2(1+cosθ)2(1+\cos\theta). Cancel (1+cosθ)(1+\cos\theta) from numerator and denominator. Result is 2/sinθ2/\sin\theta, which equals 2cscθ2\csc\theta (RHS).