Solveeit Logo

Question

Question: If $A = \begin{bmatrix} 2\sin^2 \theta & 0 \\ \sin^2 \theta & \sin^2 \theta \end{bmatrix}$ and $A^{-...

If A=[2sin2θ0sin2θsin2θ]A = \begin{bmatrix} 2\sin^2 \theta & 0 \\ \sin^2 \theta & \sin^2 \theta \end{bmatrix} and A1=[1012]A^{-1} = \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix} then the number of possible values of θ\theta in [π,π][-\pi, \pi], is

A

1

B

2

C

3

D

4

Answer

4

Explanation

Solution

The given matrix is A=[2sin2θ0sin2θsin2θ]A = \begin{bmatrix} 2\sin^2 \theta & 0 \\ \sin^2 \theta & \sin^2 \theta \end{bmatrix}. The inverse of a 2×22 \times 2 matrix M=[abcd]M = \begin{bmatrix} a & b \\ c & d \end{bmatrix} is M1=1det(M)[dbca]M^{-1} = \frac{1}{\det(M)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}, where det(M)=adbc\det(M) = ad - bc. For the given matrix AA, a=2sin2θa = 2\sin^2 \theta, b=0b = 0, c=sin2θc = \sin^2 \theta, d=sin2θd = \sin^2 \theta.

The determinant of A is det(A)=(2sin2θ)(sin2θ)(0)(sin2θ)=2sin4θ\det(A) = (2\sin^2 \theta)(\sin^2 \theta) - (0)(\sin^2 \theta) = 2\sin^4 \theta. For the inverse A1A^{-1} to exist, det(A)0\det(A) \neq 0, which means 2sin4θ02\sin^4 \theta \neq 0, so sinθ0\sin \theta \neq 0.

The inverse of A is A1=12sin4θ[sin2θ0sin2θ2sin2θ]=12sin4θ[sin2θ0sin2θ2sin2θ]A^{-1} = \frac{1}{2\sin^4 \theta} \begin{bmatrix} \sin^2 \theta & -0 \\ -\sin^2 \theta & 2\sin^2 \theta \end{bmatrix} = \frac{1}{2\sin^4 \theta} \begin{bmatrix} \sin^2 \theta & 0 \\ -\sin^2 \theta & 2\sin^2 \theta \end{bmatrix}. Since sinθ0\sin \theta \neq 0, sin2θ0\sin^2 \theta \neq 0. We can factor out sin2θ\sin^2 \theta from the matrix: A1=sin2θ2sin4θ[1012]=12sin2θ[1012]A^{-1} = \frac{\sin^2 \theta}{2\sin^4 \theta} \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix} = \frac{1}{2\sin^2 \theta} \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix}.

We are given that A1=[1012]A^{-1} = \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix}. Comparing the calculated inverse with the given inverse, we have: 12sin2θ[1012]=[1012]\frac{1}{2\sin^2 \theta} \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix}. This equality holds if and only if the scalar factor is equal to 1: 12sin2θ=1\frac{1}{2\sin^2 \theta} = 1. 2sin2θ=12\sin^2 \theta = 1. sin2θ=12\sin^2 \theta = \frac{1}{2}. Taking the square root, we get sinθ=±12\sin \theta = \pm \frac{1}{\sqrt{2}}.

We need to find the number of possible values of θ\theta in the interval [π,π][-\pi, \pi] that satisfy sinθ=12\sin \theta = \frac{1}{\sqrt{2}} or sinθ=12\sin \theta = -\frac{1}{\sqrt{2}}. Also, we must ensure that sinθ0\sin \theta \neq 0 for these values, which is true for ±12\pm \frac{1}{\sqrt{2}}.

Case 1: sinθ=12\sin \theta = \frac{1}{\sqrt{2}}. In the interval [π,π][-\pi, \pi], the values of θ\theta for which sinθ=12\sin \theta = \frac{1}{\sqrt{2}} are in the first and second quadrants. The principal value is π4\frac{\pi}{4}. The solutions in [π,π][-\pi, \pi] are θ=π4\theta = \frac{\pi}{4} (first quadrant) and θ=ππ4=3π4\theta = \pi - \frac{\pi}{4} = \frac{3\pi}{4} (second quadrant). Both π4\frac{\pi}{4} and 3π4\frac{3\pi}{4} are in [π,π][-\pi, \pi]. There are 2 solutions.

Case 2: sinθ=12\sin \theta = -\frac{1}{\sqrt{2}}. In the interval [π,π][-\pi, \pi], the values of θ\theta for which sinθ=12\sin \theta = -\frac{1}{\sqrt{2}} are in the third and fourth quadrants. The reference angle is π4\frac{\pi}{4}. The solutions in [π,π][-\pi, \pi] can be found by considering angles in the negative direction from 0. The angle in the fourth quadrant is π4-\frac{\pi}{4}. The angle in the third quadrant is π+π4=3π4-\pi + \frac{\pi}{4} = -\frac{3\pi}{4}. Both π4-\frac{\pi}{4} and 3π4-\frac{3\pi}{4} are in [π,π][-\pi, \pi]. There are 2 solutions.

The possible values of θ\theta in [π,π][-\pi, \pi] are π4,3π4,π4,3π4\frac{\pi}{4}, \frac{3\pi}{4}, -\frac{\pi}{4}, -\frac{3\pi}{4}. These are 4 distinct values. For all these values, sinθ=±120\sin \theta = \pm \frac{1}{\sqrt{2}} \neq 0, so the inverse exists.

The total number of possible values of θ\theta in [π,π][-\pi, \pi] is 2+2=42 + 2 = 4.