Solveeit Logo

Question

Question: Integrate $x\cos(2x^2 + 7) dx$....

Integrate xcos(2x2+7)dxx\cos(2x^2 + 7) dx.

A

(1/4)sin(2x2+7)+C(1/4)\sin(2x^2 + 7) + C

B

(1/4)cos(2x2+7)+C(1/4)\cos(2x^2 + 7) + C

C

((sinθ)/4(x2+7))+C((\sin \theta) / 4(x^2 + 7)) + C

D

sin(2x2+7)+C\sin(2x^2 + 7) + C

Answer

(1/4)sin(2x2+7)+C(1/4)\sin(2x^2 + 7) + C

Explanation

Solution

To integrate the given function xcos(2x2+7)dxx\cos(2x^2 + 7) dx, we can use the method of substitution.

Let u=2x2+7u = 2x^2 + 7. Then, differentiate uu with respect to xx:

dudx=ddx(2x2+7)\frac{du}{dx} = \frac{d}{dx}(2x^2 + 7)

dudx=4x\frac{du}{dx} = 4x

From this, we can express xdxx dx in terms of dudu:

du=4xdxdu = 4x dx

xdx=14dux dx = \frac{1}{4} du

Now, substitute uu and xdxx dx into the original integral:

xcos(2x2+7)dx=cos(u)(14du)\int x\cos(2x^2 + 7) dx = \int \cos(u) \left(\frac{1}{4} du\right)

=14cos(u)du= \frac{1}{4} \int \cos(u) du

The integral of cos(u)\cos(u) with respect to uu is sin(u)\sin(u). So,

=14sin(u)+C= \frac{1}{4} \sin(u) + C

Finally, substitute back u=2x2+7u = 2x^2 + 7:

=14sin(2x2+7)+C= \frac{1}{4} \sin(2x^2 + 7) + C

Therefore, the correct answer is (1/4)sin(2x2+7)+C(1/4)\sin(2x^2 + 7) + C.