Question
Question: Integrate $x\cos(2x^2 + 7) dx$....
Integrate xcos(2x2+7)dx.

A
(1/4)sin(2x2+7)+C
B
(1/4)cos(2x2+7)+C
C
((sinθ)/4(x2+7))+C
D
sin(2x2+7)+C
Answer
(1/4)sin(2x2+7)+C
Explanation
Solution
To integrate the given function xcos(2x2+7)dx, we can use the method of substitution.
Let u=2x2+7. Then, differentiate u with respect to x:
dxdu=dxd(2x2+7)
dxdu=4x
From this, we can express xdx in terms of du:
du=4xdx
xdx=41du
Now, substitute u and xdx into the original integral:
∫xcos(2x2+7)dx=∫cos(u)(41du)
=41∫cos(u)du
The integral of cos(u) with respect to u is sin(u). So,
=41sin(u)+C
Finally, substitute back u=2x2+7:
=41sin(2x2+7)+C
Therefore, the correct answer is (1/4)sin(2x2+7)+C.