Solveeit Logo

Question

Question: What is the integral of $\sin^5 x \cos^3 x \, dx$ if the lower limit is zero and the upper limit is ...

What is the integral of sin5xcos3xdx\sin^5 x \cos^3 x \, dx if the lower limit is zero and the upper limit is π/2\pi/2?

A

0.0203

B

0.0307

C

0.0417

D

0.0543

Answer

0.0417

Explanation

Solution

To evaluate the definite integral 0π/2sin5xcos3xdx\int_0^{\pi/2} \sin^5 x \cos^3 x \, dx, we can use substitution.

Let u=sinxu = \sin x, then du=cosxdxdu = \cos x \, dx. Also, cos2x=1sin2x=1u2\cos^2 x = 1 - \sin^2 x = 1 - u^2.

The integral becomes: 0π/2sin5xcos3xdx=0π/2sin5xcos2xcosxdx=0π/2sin5x(1sin2x)cosxdx\int_0^{\pi/2} \sin^5 x \cos^3 x \, dx = \int_0^{\pi/2} \sin^5 x \cos^2 x \cos x \, dx = \int_0^{\pi/2} \sin^5 x (1 - \sin^2 x) \cos x \, dx

When x=0x = 0, u=sin(0)=0u = \sin(0) = 0. When x=π/2x = \pi/2, u=sin(π/2)=1u = \sin(\pi/2) = 1.

So, the integral in terms of uu is: 01u5(1u2)du=01(u5u7)du\int_0^1 u^5 (1 - u^2) \, du = \int_0^1 (u^5 - u^7) \, du

Now, integrate term by term: 01(u5u7)du=[u66u88]01\int_0^1 (u^5 - u^7) \, du = \left[ \frac{u^6}{6} - \frac{u^8}{8} \right]_0^1

Evaluate at the limits: (166188)(066088)=1618=424324=124\left( \frac{1^6}{6} - \frac{1^8}{8} \right) - \left( \frac{0^6}{6} - \frac{0^8}{8} \right) = \frac{1}{6} - \frac{1}{8} = \frac{4}{24} - \frac{3}{24} = \frac{1}{24}

Converting to decimal: 1240.041666...\frac{1}{24} \approx 0.041666...

Rounding to four decimal places gives 0.04170.0417.