Question
Question: What is the integral of $\sin^5 x \cos^3 x \, dx$ if the lower limit is zero and the upper limit is ...
What is the integral of sin5xcos3xdx if the lower limit is zero and the upper limit is π/2?

A
0.0203
B
0.0307
C
0.0417
D
0.0543
Answer
0.0417
Explanation
Solution
To evaluate the definite integral ∫0π/2sin5xcos3xdx, we can use substitution.
Let u=sinx, then du=cosxdx. Also, cos2x=1−sin2x=1−u2.
The integral becomes: ∫0π/2sin5xcos3xdx=∫0π/2sin5xcos2xcosxdx=∫0π/2sin5x(1−sin2x)cosxdx
When x=0, u=sin(0)=0. When x=π/2, u=sin(π/2)=1.
So, the integral in terms of u is: ∫01u5(1−u2)du=∫01(u5−u7)du
Now, integrate term by term: ∫01(u5−u7)du=[6u6−8u8]01
Evaluate at the limits: (616−818)−(606−808)=61−81=244−243=241
Converting to decimal: 241≈0.041666...
Rounding to four decimal places gives 0.0417.