Solveeit Logo

Question

Question: P.T. $\pi/2 < \int_{0}^{1} \frac{dx}{\sqrt{1-x^{3/2}}} < 2$....

P.T. π/2<01dx1x3/2<2\pi/2 < \int_{0}^{1} \frac{dx}{\sqrt{1-x^{3/2}}} < 2.

Answer

The statement π2<01dx1x3/2<2\frac{\pi}{2} < \int_{0}^{1} \frac{dx}{\sqrt{1-x^{3/2}}} < 2 is true.

Explanation

Solution

  1. Lower Bound: For x(0,1)x \in (0,1), establish x2<x3/2x^2 < x^{3/2}. This implies 1x2>1x3/21-x^2 > 1-x^{3/2}. Consequently, 11x2<11x3/2\frac{1}{\sqrt{1-x^2}} < \frac{1}{\sqrt{1-x^{3/2}}}. Integrating from 0 to 1 yields 01dx1x2<01dx1x3/2\int_{0}^{1} \frac{dx}{\sqrt{1-x^2}} < \int_{0}^{1} \frac{dx}{\sqrt{1-x^{3/2}}}. Since 01dx1x2=π2\int_{0}^{1} \frac{dx}{\sqrt{1-x^2}} = \frac{\pi}{2}, we get π2<01dx1x3/2\frac{\pi}{2} < \int_{0}^{1} \frac{dx}{\sqrt{1-x^{3/2}}}.
  2. Upper Bound: Use the substitution x=sin2θx = \sin^2 \theta, so dx=2sinθcosθdθdx = 2 \sin \theta \cos \theta d\theta. The integral transforms to 0π/22sinθcosθ1sin3θdθ\int_{0}^{\pi/2} \frac{2 \sin \theta \cos \theta}{\sqrt{1-\sin^3 \theta}} d\theta. For θ(0,π/2)\theta \in (0, \pi/2), establish sin3θ<sin2θ\sin^3 \theta < \sin^2 \theta. This implies 1sin3θ>1sin2θ=cos2θ1-\sin^3 \theta > 1-\sin^2 \theta = \cos^2 \theta. Thus, 1sin3θ>cosθ\sqrt{1-\sin^3 \theta} > \cos \theta, leading to 11sin3θ<1cosθ\frac{1}{\sqrt{1-\sin^3 \theta}} < \frac{1}{\cos \theta}. Multiplying by 2sinθcosθ2 \sin \theta \cos \theta and integrating from 0 to π/2\pi/2 yields 0π/22sinθcosθ1sin3θdθ<0π/22sinθdθ=2\int_{0}^{\pi/2} \frac{2 \sin \theta \cos \theta}{\sqrt{1-\sin^3 \theta}} d\theta < \int_{0}^{\pi/2} 2 \sin \theta d\theta = 2. Therefore, 01dx1x3/2<2\int_{0}^{1} \frac{dx}{\sqrt{1-x^{3/2}}} < 2.