Solveeit Logo

Question

Question: Let the given polynomial be $P(x) = x^4 - 3x + 9$. The roots of $P(x)=0$ are $\alpha, \beta, \gamma,...

Let the given polynomial be P(x)=x43x+9P(x) = x^4 - 3x + 9. The roots of P(x)=0P(x)=0 are α,β,γ,δ\alpha, \beta, \gamma, \delta. Find the value of (α3+β3+γ3+δ3)(\alpha^3 + \beta^3 + \gamma^3 + \delta^3).

Answer

9

Explanation

Solution

The equation is x4+0x3+0x23x+9=0x^4 + 0x^3 + 0x^2 - 3x + 9 = 0. From Vieta's formulas: e1=α=0e_1 = \sum \alpha = 0 e2=αβ=0e_2 = \sum \alpha\beta = 0 e3=αβγ=(3)/1=3e_3 = \sum \alpha\beta\gamma = -(-3)/1 = 3 e4=αβγδ=9e_4 = \alpha\beta\gamma\delta = 9 Using Newton's sums: p1=e1=0p_1 = e_1 = 0 p2=e1p12e2=0(0)2(0)=0p_2 = e_1 p_1 - 2e_2 = 0(0) - 2(0) = 0 p3=e1p2e2p1+3e3=0(0)0(0)+3(3)=9p_3 = e_1 p_2 - e_2 p_1 + 3e_3 = 0(0) - 0(0) + 3(3) = 9 Thus, α3+β3+γ3+δ3=9\alpha^3 + \beta^3 + \gamma^3 + \delta^3 = 9.