Solveeit Logo

Question

Question: Find $\frac{\sum \alpha^3}{\sum x^2}$ for the equation $x^3 + ax + b = 0$....

Find α3x2\frac{\sum \alpha^3}{\sum x^2} for the equation x3+ax+b=0x^3 + ax + b = 0.

A

2b3a\frac{2b}{3a}

B

3b2a\frac{3b}{2a}

C

3a2b\frac{3a}{2b}

D

2a3b\frac{2a}{3b}

Answer

3b2a\frac{3b}{2a}

Explanation

Solution

Let the roots of x3+ax+b=0x^3 + ax + b = 0 be α,β,γ\alpha, \beta, \gamma. From Vieta's formulas:

  1. α+β+γ=0\alpha + \beta + \gamma = 0
  2. αβ+βγ+γα=a\alpha\beta + \beta\gamma + \gamma\alpha = a
  3. αβγ=b\alpha\beta\gamma = -b

We need to find α3α2\frac{\sum \alpha^3}{\sum \alpha^2}.

For α2\sum \alpha^2: α2=(α+β+γ)22(αβ+βγ+γα)\sum \alpha^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \gamma\alpha) α2=(0)22(a)=2a\sum \alpha^2 = (0)^2 - 2(a) = -2a

For α3\sum \alpha^3: Since α\alpha is a root, α3+aα+b=0    α3=aαb\alpha^3 + a\alpha + b = 0 \implies \alpha^3 = -a\alpha - b. Similarly, β3=aβb\beta^3 = -a\beta - b and γ3=aγb\gamma^3 = -a\gamma - b. Summing these: α3=a(α+β+γ)3b\sum \alpha^3 = -a(\alpha + \beta + \gamma) - 3b α3=a(0)3b=3b\sum \alpha^3 = -a(0) - 3b = -3b

The ratio is α3α2=3b2a=3b2a\frac{\sum \alpha^3}{\sum \alpha^2} = \frac{-3b}{-2a} = \frac{3b}{2a}.