Question
Question: If $p \in (0,1)$ such that $k = sgn(101p^{50}(1 - p) - 1 + p^{101})$ and $\ell_n = \sum_{r=1}^{n-1}...
If p∈(0,1) such that
k=sgn(101p50(1−p)−1+p101) and ℓn=∑r=1n−1(n−r)(rn)2r2+kr(n−2)+1,
then 15ℓ15−k is equal to
Answer
225
Explanation
Solution
Solution Explanation
-
We first note that k=sgn(101p50(1−p)−1+p101). Since p∈(0,1), one verifies that 101p50(1−p)+p101<1, so the expression inside the sign function is negative. Hence,
k=−1. -
With k=−1, the sum becomes
$$ \ell_n = \sum_{r=1}^{n-1} \frac{2r^2 - r(n-2) + 1}{(n-r){n \choose r}}.
- For n=15, $$ \ell_{15} = \frac{15^2-1}{15} = \frac{225-1}{15} = \frac{224}{15}.