Solveeit Logo

Question

Question: If $p \in (0,1)$ such that $k = sgn(101p^{50}(1 - p) - 1 + p^{101})$ and $\ell_n = \sum_{r=1}^{n-1}...

If p(0,1)p \in (0,1) such that

k=sgn(101p50(1p)1+p101)k = sgn(101p^{50}(1 - p) - 1 + p^{101}) and n=r=1n12r2+kr(n2)+1(nr)(nr)\ell_n = \sum_{r=1}^{n-1}\frac{2r^2 + kr(n-2) + 1}{(n-r){n \choose r}},

then 1515k15\ell_{15} - k is equal to

Answer

225

Explanation

Solution

Solution Explanation

  1. We first note that   k=sgn(101p50(1p)1+p101).k = \operatorname{sgn}\Big(101\,p^{50}(1-p) - 1 + p^{101}\Big). Since p(0,1)p\in (0,1), one verifies that   101p50(1p)+p101<1,101\,p^{50}(1-p)+p^{101} < 1, so the expression inside the sign function is negative. Hence,
      k=1.k = -1.

  2. With k=1k=-1, the sum becomes
      $$ \ell_n = \sum_{r=1}^{n-1} \frac{2r^2 - r(n-2) + 1}{(n-r){n \choose r}}.

By evaluating for small values of $n$ (for example, $n=2,3,4,5$) one finds:   - For $n=2$: $\ell_2=\frac{3}{2}=\frac{2^2-1}{2}$,   - For $n=3$: $\ell_3=\frac{8}{3}=\frac{3^2-1}{3}$,   - For $n=4$: $\ell_4=\frac{15}{4}=\frac{4^2-1}{4}$,   - For $n=5$: $\ell_5=\frac{24}{5}=\frac{5^2-1}{5}$. This suggests the general result:   $$ \ell_n = \frac{n^2-1}{n}.
  1. For n=15n=15,   $$ \ell_{15} = \frac{15^2-1}{15} = \frac{225-1}{15} = \frac{224}{15}.
Thus,   $$ 15\ell_{15} - k = 15\cdot\frac{224}{15} - (-1) = 224 + 1 = 225.