Solveeit Logo

Question

Question: The integral $\int \frac{dx}{(x+4)^{\frac{8}{7}}(x-3)^{\frac{6}{7}}}$ is equal to: (where C is a con...

The integral dx(x+4)87(x3)67\int \frac{dx}{(x+4)^{\frac{8}{7}}(x-3)^{\frac{6}{7}}} is equal to: (where C is a constant of integration)

A

(x3x+4)17+C\left(\frac{x-3}{x+4}\right)^{\frac{1}{7}}+C

B

12(x3x+4)17+C-\frac{1}{2}\left(\frac{x-3}{x+4}\right)^{\frac{1}{7}}+C

C

12(x3x+4)37+C\frac{1}{2}\left(\frac{x-3}{x+4}\right)^{\frac{3}{7}}+C

D

113(x3x+4)137+C-\frac{1}{13}\left(\frac{x-3}{x+4}\right)^{\frac{13}{7}}+C

Answer

(x3x+4)17+C\left(\frac{x-3}{x+4}\right)^{\frac{1}{7}}+C

Explanation

Solution

The given integral is solved using the substitution t=x3x+4t = \frac{x-3}{x+4}. After differentiating and substituting, the integral becomes t67dt\int t^{-\frac{6}{7}} dt, which evaluates to t17+Ct^{\frac{1}{7}} + C. Substituting back gives the final answer (x3x+4)17+C\left(\frac{x-3}{x+4}\right)^{\frac{1}{7}}+C.