Solveeit Logo

Question

Question: If the lines x+ay+a=0, bx+y+b=0, cx+cy+1=0, where a, b, c are non-zero and non-unity, pass through...

If the lines

x+ay+a=0, bx+y+b=0, cx+cy+1=0,

where a, b, c are non-zero and non-unity, pass through the same point then the value of

a1a+b1b+c1c\frac{a}{1-a} + \frac{b}{1-b} + \frac{c}{1-c} is equal to

A

-1

B

2

C

1

D

3

Answer

-1

Explanation

Solution

Given the lines

L1:x+ay+a=0,L2:bx+y+b=0,L3:cx+cy+1=0,L_1: x + ay + a=0,\quad L_2: bx + y + b=0,\quad L_3: cx + cy + 1=0,

concurrent at a point, their coefficients (in homogeneous form) must satisfy the determinant condition:

1aab1bcc1=0.\begin{vmatrix} 1 & a & a \\ b & 1 & b \\ c & c & 1 \end{vmatrix} = 0.

Expanding the determinant along the first row:

11bc1abbc1+ab1cc=0.1\begin{vmatrix}1&b\\ c&1\end{vmatrix} - a\begin{vmatrix}b&b\\ c&1\end{vmatrix} + a\begin{vmatrix}b&1\\ c&c\end{vmatrix} = 0.

Calculating the 2×2 determinants:

1bc1=1bc,bbc1=b(1c),b1cc=c(b1).\begin{vmatrix}1&b\\ c&1\end{vmatrix} = 1-bc,\quad \begin{vmatrix}b&b\\ c&1\end{vmatrix} = b(1-c),\quad \begin{vmatrix}b&1\\ c&c\end{vmatrix} = c(b-1).

Thus, the condition becomes:

1bcab(1c)+ac(b1)=0.1-bc - a\,b(1-c) + a\,c(b-1) = 0.

Rearrange to express aa:

1bc+a[b(1c)+c(b1)]=0.1 - bc + a\big[-b(1-c)+ c(b-1)\big]= 0.

Note that:

b(1c)+c(b1)=b+bc+cbc=2bcbc.-b(1-c)+ c(b-1) = -b+bc+cb-c = 2bc - b - c.

Thus,

1bc+a(2bcbc)=0a=bc12bcbc.1-bc + a(2bc-b-c)=0 \quad\Longrightarrow\quad a = \frac{bc-1}{2bc-b-c}.

Now, we need to evaluate:

S=a1a+b1b+c1c.S = \frac{a}{1-a} + \frac{b}{1-b} + \frac{c}{1-c}.

Compute a1a\frac{a}{1-a}:

Given a=bc12bcbca = \frac{bc-1}{2bc-b-c}, then

1a=1bc12bcbc=(2bcbc)(bc1)2bcbc=bcbc+12bcbc.1-a = 1 - \frac{bc-1}{2bc-b-c} = \frac{(2bc-b-c) - (bc-1)}{2bc-b-c} = \frac{bc - b - c + 1}{2bc-b-c}.

Recognize that:

bcbc+1=(b1)(c1).bc - b - c + 1 = (b-1)(c-1).

Thus,

a1a=bc12bcbc(b1)(c1)2bcbc=bc1(b1)(c1).\frac{a}{1-a} = \frac{\frac{bc-1}{2bc-b-c}}{\frac{(b-1)(c-1)}{2bc-b-c}} = \frac{bc-1}{(b-1)(c-1)}.

Also observe:

b1b=bb1,c1c=cc1.\frac{b}{1-b} = -\frac{b}{b-1}, \quad \frac{c}{1-c} = -\frac{c}{c-1}.

So,

S=bc1(b1)(c1)bb1cc1.S = \frac{bc-1}{(b-1)(c-1)} - \frac{b}{b-1} - \frac{c}{c-1}.

Get a common denominator (b1)(c1)(b-1)(c-1) for the last two terms:

bb1=b(c1)(b1)(c1),cc1=c(b1)(b1)(c1).\frac{b}{b-1} = \frac{b(c-1)}{(b-1)(c-1)},\quad \frac{c}{c-1} = \frac{c(b-1)}{(b-1)(c-1)}.

Thus,

S=bc1b(c1)c(b1)(b1)(c1).S = \frac{bc-1 - b(c-1) - c(b-1)}{(b-1)(c-1)}.

Expanding the numerator:

bc1[bcb][bcc]=bc1bc+bbc+c=b+c1bc.bc-1 - \big[bc - b\big] - \big[bc - c\big] = bc-1 - bc + b - bc + c = b+c -1 -bc.

Notice that:

b+c1bc=(1bc+bc)=(1b)(1c).b+c -1 - bc = -(1-b-c+bc) = -(1-b)(1-c).

Also, note that:

(b1)(c1)=((1b))((1c))=(1b)(1c).(b-1)(c-1) = (-(1-b))\cdot (-(1-c)) = (1-b)(1-c).

Finally,

S=(1b)(1c)(1b)(1c)=1.S = \frac{- (1-b)(1-c)}{(1-b)(1-c)} = -1.

So, the value is 1-1.