Solveeit Logo

Question

Question: If a²+b²+c²=-2 and $f(x) = \begin{vmatrix} 1+a^2x & (1+b^2)x & (1+c^2)x \\ (1+a^2)x & 1+b^2x & (1+c...

If a²+b²+c²=-2 and

f(x)=1+a2x(1+b2)x(1+c2)x(1+a2)x1+b2x(1+c2)x(1+a2)x(1+b2)x1+c2xf(x) = \begin{vmatrix} 1+a^2x & (1+b^2)x & (1+c^2)x \\ (1+a^2)x & 1+b^2x & (1+c^2)x \\ (1+a^2)x & (1+b^2)x & 1+c^2x \end{vmatrix} then f(x) is a

polynomial of degree

A

0

B

1

C

2

D

3

Answer

1

Explanation

Solution

We are given

a2+b2+c2=2a^2 + b^2 + c^2 = -2

and

f(x)=1+a2x(1+b2)x(1+c2)x(1+a2)x1+b2x(1+c2)x(1+a2)x(1+b2)x1+c2x.f(x)=\begin{vmatrix} 1+a^2x & (1+b^2)x & (1+c^2)x \\ (1+a^2)x & 1+b^2x & (1+c^2)x \\ (1+a^2)x & (1+b^2)x & 1+c^2x \end{vmatrix}.

Step 1. Restructure the Matrix:

Write each entry of the matrix as:

  • Diagonal: 1+a2x,1+b2x,1+c2x1+a^2x,\, 1+b^2x,\, 1+c^2x.
  • Off-diagonal: (1+b2)x,(1+c2)x,(1+b^2)x,\,(1+c^2)x, etc.

Notice that for any entry from row ii:

1+α2x=1+(α2x)1+\alpha^2 x = 1 + (\alpha^2 x)

and its off-diagonals are just 1+β2x1+\beta^2x but without the “1” (i.e. they are effectively (1+β2x)=[1+β2x] (1+\beta^2x) = [1 +\beta^2x] when compared with the diagonal which has an extra constant 1). Define:

u=1+a2x,v=1+b2x,w=1+c2x.u=1+a^2x,\quad v=1+b^2x,\quad w=1+c^2x.

Then the matrix becomes:

(uv1w1u1vw1u1v1w).\begin{pmatrix} u & v-1 & w-1 \\ u-1 & v & w-1 \\ u-1 & v-1 & w \end{pmatrix}.

Step 2. Compute the Determinant:

A direct expansion (which exploits symmetry) leads to:

f(x)=u(v+w1)(u1)[(v1)+(w1)].f(x)= u(v+w-1) - (u-1)[(v-1)+(w-1)].

Observe:

(v1)+(w1)=v+w2.(v-1)+(w-1)= v+w-2.

So,

f(x)=u(v+w1)(u1)(v+w2).f(x)= u(v+w-1) - (u-1)(v+w-2).

Substitute back u=1+a2xu=1+a^2x and note that

v+w=(1+b2x)+(1+c2x)=2+(b2+c2)x.v+w = (1+b^2x)+(1+c^2x)= 2+(b^2+c^2)x.

Thus,

v+w1=1+(b2+c2)x,andv+w2=(b2+c2)x.v+w-1 = 1+(b^2+c^2)x,\quad \text{and} \quad v+w-2 = (b^2+c^2)x.

Also, u1=a2xu-1= a^2x.

Now,

f(x)=(1+a2x)[1+(b2+c2)x]a2x(b2+c2)x.f(x)= (1+a^2x)[1+(b^2+c^2)x] - a^2x\cdot (b^2+c^2)x.

Expanding:

(1+a2x)[1+(b2+c2)x]=1+(b2+c2)x+a2x+a2(b2+c2)x2.(1+a^2x)[1+(b^2+c^2)x] = 1 + (b^2+c^2)x + a^2x + a^2(b^2+c^2)x^2.

and

a2x(b2+c2)x=a2(b2+c2)x2.a^2x\cdot (b^2+c^2)x = a^2(b^2+c^2)x^2.

The quadratic terms cancel:

f(x)=1+(a2+b2+c2)x.f(x)= 1 + (a^2+b^2+c^2)x.

Given a2+b2+c2=2a^2+b^2+c^2=-2, we have:

f(x)=12x.f(x)= 1-2x.

Thus, f(x)f(x) is a linear polynomial (degree 11).