Solveeit Logo

Question

Question: $(x-3)^2 + |x-3| - 11 = 0$ the sum of solutions of equation is...

(x3)2+x311=0(x-3)^2 + |x-3| - 11 = 0 the sum of solutions of equation is

A

5

B

6

Answer

6

Explanation

Solution

The given equation is (x3)2+x311=0(x-3)^2 + |x-3| - 11 = 0. We can notice that (x3)2=x32(x-3)^2 = |x-3|^2. Let y=x3y = |x-3|. Since x3|x-3| represents an absolute value, y0y \ge 0. Substituting yy into the equation, we get: y2+y11=0y^2 + y - 11 = 0

This is a quadratic equation in yy. We can solve for yy using the quadratic formula y=b±b24ac2ay = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, where a=1a=1, b=1b=1, c=11c=-11. y=1±124(1)(11)2(1)y = \frac{-1 \pm \sqrt{1^2 - 4(1)(-11)}}{2(1)} y=1±1+442y = \frac{-1 \pm \sqrt{1 + 44}}{2} y=1±452y = \frac{-1 \pm \sqrt{45}}{2} y=1±352y = \frac{-1 \pm 3\sqrt{5}}{2}

We have two possible values for yy: y1=1+352y_1 = \frac{-1 + 3\sqrt{5}}{2} y2=1352y_2 = \frac{-1 - 3\sqrt{5}}{2}

Since y=x3y = |x-3|, yy must be non-negative (y0y \ge 0). We only consider the valid solution for yy:

x3=1+352|x-3| = \frac{-1 + 3\sqrt{5}}{2}

Since the right side 1+352\frac{-1 + 3\sqrt{5}}{2} is positive, the equation x3=k|x-3| = k where k>0k > 0 has two solutions: x3=kx-3 = k and x3=kx-3 = -k. Here, k=1+352k = \frac{-1 + 3\sqrt{5}}{2}.

Case 1: x3=1+352x-3 = \frac{-1 + 3\sqrt{5}}{2} x1=3+1+352=62+1+352=61+352=5+352x_1 = 3 + \frac{-1 + 3\sqrt{5}}{2} = \frac{6}{2} + \frac{-1 + 3\sqrt{5}}{2} = \frac{6 - 1 + 3\sqrt{5}}{2} = \frac{5 + 3\sqrt{5}}{2}

Case 2: x3=(1+352)x-3 = -\left(\frac{-1 + 3\sqrt{5}}{2}\right) x3=1352x-3 = \frac{1 - 3\sqrt{5}}{2} x2=3+1352=62+1352=6+1352=7352x_2 = 3 + \frac{1 - 3\sqrt{5}}{2} = \frac{6}{2} + \frac{1 - 3\sqrt{5}}{2} = \frac{6 + 1 - 3\sqrt{5}}{2} = \frac{7 - 3\sqrt{5}}{2}

The solutions of the equation are x1=5+352x_1 = \frac{5 + 3\sqrt{5}}{2} and x2=7352x_2 = \frac{7 - 3\sqrt{5}}{2}.

The question asks for the sum of the solutions. Sum of solutions =x1+x2= x_1 + x_2 Sum =5+352+7352= \frac{5 + 3\sqrt{5}}{2} + \frac{7 - 3\sqrt{5}}{2} Sum =(5+35)+(735)2= \frac{(5 + 3\sqrt{5}) + (7 - 3\sqrt{5})}{2} Sum =5+35+7352= \frac{5 + 3\sqrt{5} + 7 - 3\sqrt{5}}{2} Sum =12+(3535)2= \frac{12 + (3\sqrt{5} - 3\sqrt{5})}{2} Sum =12+02= \frac{12 + 0}{2} Sum =122= \frac{12}{2} Sum =6= 6

The sum of the solutions is 6.