Solveeit Logo

Question

Question: The length of the perpendicular from the point$(a, 4, 2), a > 0$ to the line $\frac{x+1}{2}=\frac{y-...

The length of the perpendicular from the point(a,4,2),a>0(a, 4, 2), a > 0 to the line x+12=y33=z11\frac{x+1}{2}=\frac{y-3}{3}=\frac{z-1}{-1} is 262\sqrt{6} and Q(α1,α2,α3)Q(\alpha_1, \alpha_2, \alpha_3) is the image of a point PP in the line then a+α1+α2+α3a + \alpha_1 + \alpha_2 + \alpha_3 is equal to

A

5

B

8

C

12

D

14

Answer

8

Explanation

Solution

Let the given point be P=(a,4,2)P = (a, 4, 2) with a>0a > 0. The given line is L:x+12=y33=z11L: \frac{x+1}{2}=\frac{y-3}{3}=\frac{z-1}{-1}. The direction ratios of the line are (2,3,1)(2, 3, -1). Let RR be the foot of the perpendicular from PP to the line LL. A general point on the line LL can be written as R=(1+2λ,3+3λ,1λ)R = (-1 + 2\lambda, 3 + 3\lambda, 1 - \lambda) for some scalar λ\lambda.

The vector PR\vec{PR} is given by RP=(1+2λa,3+3λ4,1λ2)=(1a+2λ,1+3λ,1λ)R - P = (-1 + 2\lambda - a, 3 + 3\lambda - 4, 1 - \lambda - 2) = (-1 - a + 2\lambda, -1 + 3\lambda, -1 - \lambda). Since PR\vec{PR} is perpendicular to the direction vector of the line (2,3,1)(2, 3, -1), their dot product is zero: PR(2,3,1)=2(1a+2λ)+3(1+3λ)1(1λ)=0\vec{PR} \cdot (2, 3, -1) = 2(-1 - a + 2\lambda) + 3(-1 + 3\lambda) - 1(-1 - \lambda) = 0 22a+4λ3+9λ+1+λ=0-2 - 2a + 4\lambda - 3 + 9\lambda + 1 + \lambda = 0 14λ2a4=014\lambda - 2a - 4 = 0 7λa2=0    λ=a+277\lambda - a - 2 = 0 \implies \lambda = \frac{a+2}{7}.

The length of the perpendicular PRPR is given as 262\sqrt{6}, so PR2=(26)2=24PR^2 = (2\sqrt{6})^2 = 24. PR2=(1a+2λ)2+(1+3λ)2+(1λ)2=24PR^2 = (-1 - a + 2\lambda)^2 + (-1 + 3\lambda)^2 + (-1 - \lambda)^2 = 24.

Substitute λ=a+27\lambda = \frac{a+2}{7} into the components of PR\vec{PR}: xx-component: 1a+2(a+27)=77a+2a+47=5a37-1 - a + 2\left(\frac{a+2}{7}\right) = \frac{-7 - 7a + 2a + 4}{7} = \frac{-5a - 3}{7} yy-component: 1+3(a+27)=7+3a+67=3a17-1 + 3\left(\frac{a+2}{7}\right) = \frac{-7 + 3a + 6}{7} = \frac{3a - 1}{7} zz-component: 1(a+27)=7a27=a97-1 - \left(\frac{a+2}{7}\right) = \frac{-7 - a - 2}{7} = \frac{-a - 9}{7}

Now substitute these into the PR2PR^2 equation: (5a37)2+(3a17)2+(a97)2=24\left(\frac{-5a - 3}{7}\right)^2 + \left(\frac{3a - 1}{7}\right)^2 + \left(\frac{-a - 9}{7}\right)^2 = 24 149[(25a2+30a+9)+(9a26a+1)+(a2+18a+81)]=24\frac{1}{49} [ (25a^2 + 30a + 9) + (9a^2 - 6a + 1) + (a^2 + 18a + 81) ] = 24 35a2+42a+91=24×49=117635a^2 + 42a + 91 = 24 \times 49 = 1176 35a2+42a1085=035a^2 + 42a - 1085 = 0 Dividing by 7, we get: 5a2+6a155=05a^2 + 6a - 155 = 0. Factoring this quadratic equation: (5a+31)(a5)=0(5a+31)(a-5) = 0. The possible values for aa are a=5a=5 or a=31/5a=-31/5. Since a>0a > 0, we have a=5a=5.

Now we find the value of λ\lambda using a=5a=5: λ=a+27=5+27=1\lambda = \frac{a+2}{7} = \frac{5+2}{7} = 1.

The coordinates of the foot of the perpendicular RR are: R=(1+2λ,3+3λ,1λ)=(1+2(1),3+3(1),11)=(1,6,0)R = (-1 + 2\lambda, 3 + 3\lambda, 1 - \lambda) = (-1 + 2(1), 3 + 3(1), 1 - 1) = (1, 6, 0).

The point Q(α1,α2,α3)Q(\alpha_1, \alpha_2, \alpha_3) is the image of P(a,4,2)P(a, 4, 2) in the line LL. The foot of the perpendicular RR is the midpoint of the segment PQPQ. So, R=(a+α12,4+α22,2+α32)R = \left(\frac{a + \alpha_1}{2}, \frac{4 + \alpha_2}{2}, \frac{2 + \alpha_3}{2}\right). Using P=(5,4,2)P=(5, 4, 2) and R=(1,6,0)R=(1, 6, 0): 1=5+α12    2=5+α1    α1=31 = \frac{5 + \alpha_1}{2} \implies 2 = 5 + \alpha_1 \implies \alpha_1 = -3. 6=4+α22    12=4+α2    α2=86 = \frac{4 + \alpha_2}{2} \implies 12 = 4 + \alpha_2 \implies \alpha_2 = 8. 0=2+α32    0=2+α3    α3=20 = \frac{2 + \alpha_3}{2} \implies 0 = 2 + \alpha_3 \implies \alpha_3 = -2. Thus, Q=(3,8,2)Q = (-3, 8, -2).

We need to find the value of a+α1+α2+α3a + \alpha_1 + \alpha_2 + \alpha_3. a+α1+α2+α3=5+(3)+8+(2)=53+82=8a + \alpha_1 + \alpha_2 + \alpha_3 = 5 + (-3) + 8 + (-2) = 5 - 3 + 8 - 2 = 8.