Solveeit Logo

Question

Question: The figure shows three infinite thin non-conducting charged plates perpendicular to the plane of the...

The figure shows three infinite thin non-conducting charged plates perpendicular to the plane of the paper with charge per unit area +σ\sigma, +2σ\sigma and –3σ\sigma. As we move from plate 1 to plate 2 magnitude of potential change occur is V12V_{12}, that from plate 2 to 3 is V23V_{23} and that from plate 1 to 3 is V13V_{13}. Then-

A

Ratio of net electric field at ponit A to that at point B is 1/3

B

9V12=2V239V_{12} = 2 V_{23}

C

2V13=7V122V_{13} = 7 V_{12}

D

3V13=5V233V_{13} = 5V_{23}

Answer

Ratio of net electric field at ponit A to that at point B is 1/3

Explanation

Solution

The problem involves calculating electric fields and potential differences due to three infinite thin non-conducting charged plates.

1. Electric Field due to a single infinite non-conducting charged plate:

The electric field magnitude due to a single infinite non-conducting charged plate with surface charge density σs\sigma_s is given by E=σs2ϵ0E = \frac{|\sigma_s|}{2\epsilon_0}. The direction of the field is away from a positively charged plate and towards a negatively charged plate.

Let's define E0=σ2ϵ0E_0 = \frac{\sigma}{2\epsilon_0}.

The plates are:

  • Plate 1: +σ+\sigma
  • Plate 2: +2σ+2\sigma
  • Plate 3: 3σ-3\sigma

Let's set up a coordinate system where Plate 1 is at x=0x=0, Plate 2 at x=2mx=2m, and Plate 3 at x=4mx=4m. We'll consider the right direction as positive.

Electric field contributions from each plate:

  • E1E_1: Due to Plate 1 (+σ+\sigma). Field is E0E_0 (i.e., σ2ϵ0\frac{\sigma}{2\epsilon_0}) away from Plate 1.
  • E2E_2: Due to Plate 2 (+2σ+2\sigma). Field is 2E02E_0 (i.e., 2σ2ϵ0=σϵ0\frac{2\sigma}{2\epsilon_0} = \frac{\sigma}{\epsilon_0}) away from Plate 2.
  • E3E_3: Due to Plate 3 (3σ-3\sigma). Field is 3E03E_0 (i.e., 3σ2ϵ0\frac{3\sigma}{2\epsilon_0}) towards Plate 3.

Net Electric Field in different regions:

  • Region I (x < 0, Left of Plate 1):

    • E1E_1: Left (E0-E_0)
    • E2E_2: Left (2E0-2E_0)
    • E3E_3: Right (+3E0+3E_0)
    • Enet,I=E02E0+3E0=0E_{net, I} = -E_0 - 2E_0 + 3E_0 = 0
  • Region II (0 < x < 2m, Between Plate 1 and Plate 2, where Point A is):

    • E1E_1: Right (+E0+E_0)
    • E2E_2: Left (2E0-2E_0)
    • E3E_3: Right (+3E0+3E_0)
    • Enet,II=+E02E0+3E0=2E0=σϵ0E_{net, II} = +E_0 - 2E_0 + 3E_0 = 2E_0 = \frac{\sigma}{\epsilon_0} (rightward)
    • Magnitude of electric field at A: EA=σϵ0|E_A| = \frac{\sigma}{\epsilon_0}.
  • Region III (2m < x < 4m, Between Plate 2 and Plate 3, where Point B is):

    • E1E_1: Right (+E0+E_0)
    • E2E_2: Right (+2E0+2E_0)
    • E3E_3: Right (+3E0+3E_0)
    • Enet,III=+E0+2E0+3E0=6E0=3σϵ0E_{net, III} = +E_0 + 2E_0 + 3E_0 = 6E_0 = \frac{3\sigma}{\epsilon_0} (rightward)
    • Magnitude of electric field at B: EB=3σϵ0|E_B| = \frac{3\sigma}{\epsilon_0}.
  • Region IV (x > 4m, Right of Plate 3):

    • E1E_1: Right (+E0+E_0)
    • E2E_2: Right (+2E0+2E_0)
    • E3E_3: Left (3E0-3E_0)
    • Enet,IV=+E0+2E03E0=0E_{net, IV} = +E_0 + 2E_0 - 3E_0 = 0

2. Evaluate Option (A): Ratio of net electric field at point A to that at point B.

EA=σϵ0|E_A| = \frac{\sigma}{\epsilon_0}

EB=3σϵ0|E_B| = \frac{3\sigma}{\epsilon_0}

Ratio EAEB=σ/ϵ03σ/ϵ0=13\frac{|E_A|}{|E_B|} = \frac{\sigma/\epsilon_0}{3\sigma/\epsilon_0} = \frac{1}{3}.

So, Option (A) is correct.

3. Calculate Potential Changes:

The potential difference between two points is given by ΔV=VfinalVinitial=initialfinalEdl\Delta V = V_{final} - V_{initial} = -\int_{initial}^{final} \vec{E} \cdot d\vec{l}. For a uniform electric field in a region, ΔV=ExΔx\Delta V = -E_x \Delta x.

  • Magnitude of potential change from Plate 1 to Plate 2 (V12V_{12}):

    • Movement is from x=0x=0 to x=2mx=2m. The electric field in this region (Region II) is Enet,II=σϵ0E_{net, II} = \frac{\sigma}{\epsilon_0} (rightward).
    • V2V1=Enet,II×(2m)=σϵ0×2=2σϵ0V_2 - V_1 = -E_{net, II} \times (2m) = -\frac{\sigma}{\epsilon_0} \times 2 = -\frac{2\sigma}{\epsilon_0}.
    • V12=V2V1=2σϵ0V_{12} = |V_2 - V_1| = \frac{2\sigma}{\epsilon_0}.
  • Magnitude of potential change from Plate 2 to Plate 3 (V23V_{23}):

    • Movement is from x=2mx=2m to x=4mx=4m. The electric field in this region (Region III) is Enet,III=3σϵ0E_{net, III} = \frac{3\sigma}{\epsilon_0} (rightward).
    • V3V2=Enet,III×(2m)=3σϵ0×2=6σϵ0V_3 - V_2 = -E_{net, III} \times (2m) = -\frac{3\sigma}{\epsilon_0} \times 2 = -\frac{6\sigma}{\epsilon_0}.
    • V23=V3V2=6σϵ0V_{23} = |V_3 - V_2| = \frac{6\sigma}{\epsilon_0}.
  • Magnitude of potential change from Plate 1 to Plate 3 (V13V_{13}):

    • This is the sum of potential changes from 1 to 2 and 2 to 3.
    • V3V1=(V3V2)+(V2V1)=6σϵ02σϵ0=8σϵ0V_3 - V_1 = (V_3 - V_2) + (V_2 - V_1) = -\frac{6\sigma}{\epsilon_0} - \frac{2\sigma}{\epsilon_0} = -\frac{8\sigma}{\epsilon_0}.
    • V13=V3V1=8σϵ0V_{13} = |V_3 - V_1| = \frac{8\sigma}{\epsilon_0}.

4. Evaluate Options (B), (C), (D):

  • Option (B): 9V12=2V239V_{12} = 2 V_{23}

    • LHS: 9V12=9×2σϵ0=18σϵ09V_{12} = 9 \times \frac{2\sigma}{\epsilon_0} = \frac{18\sigma}{\epsilon_0}
    • RHS: 2V23=2×6σϵ0=12σϵ02V_{23} = 2 \times \frac{6\sigma}{\epsilon_0} = \frac{12\sigma}{\epsilon_0}
    • 181218 \neq 12. So, Option (B) is incorrect.
  • Option (C): 2V13=7V122V_{13} = 7 V_{12}

    • LHS: 2V13=2×8σϵ0=16σϵ02V_{13} = 2 \times \frac{8\sigma}{\epsilon_0} = \frac{16\sigma}{\epsilon_0}
    • RHS: 7V12=7×2σϵ0=14σϵ07V_{12} = 7 \times \frac{2\sigma}{\epsilon_0} = \frac{14\sigma}{\epsilon_0}
    • 161416 \neq 14. So, Option (C) is incorrect.
  • Option (D): 3V13=5V233V_{13} = 5V_{23}

    • LHS: 3V13=3×8σϵ0=24σϵ03V_{13} = 3 \times \frac{8\sigma}{\epsilon_0} = \frac{24\sigma}{\epsilon_0}
    • RHS: 5V23=5×6σϵ0=30σϵ05V_{23} = 5 \times \frac{6\sigma}{\epsilon_0} = \frac{30\sigma}{\epsilon_0}
    • 243024 \neq 30. So, Option (D) is incorrect.

Based on the calculations, only Option (A) is correct.