Question
Question: Let $\vec{a} = 3\hat{i} - \hat{j} + 2\hat{k}$ and $\vec{b} = \vec{a} \times (\hat{i} - 2\hat{k})$ an...
Let a=3i^−j^+2k^ and b=a×(i^−2k^) and c=b×k^ then projection of a on c+2j^

Answer
3i^
Explanation
Solution
Steps:
-
Calculate b: Given a=3i^−j^+2k^ and let v=i^−2k^.
b=a×v=(3i^−j^+2k^)×(i^−2k^)Using the determinant method for cross product:
b=i^31j^−10k^2−2=i^((−1)(−2)−(2)(0))−j^((3)(−2)−(2)(1))+k^((3)(0)−(−1)(1)) b=i^(2)−j^(−6−2)+k^(1)=2i^+8j^+k^ -
Calculate c:
c=b×k^=(2i^+8j^+k^)×k^Using the properties of cross products of unit vectors (i^×k^=−j^, j^×k^=i^, k^×k^=0):
c=(2i^×k^)+(8j^×k^)+(k^×k^) c=2(−j^)+8(i^)+0=8i^−2j^ -
Calculate the vector to project on: Let d=c+2j^.
d=(8i^−2j^)+2j^=8i^ -
Calculate the projection of a on d: The formula for the vector projection of a on d is:
projda=∣d∣2a⋅ddCalculate the dot product a⋅d:
a⋅d=(3i^−j^+2k^)⋅(8i^)=(3)(8)+(−1)(0)+(2)(0)=24Calculate the squared magnitude of d:
∣d∣2=∣8i^∣2=82=64Substitute these values into the projection formula:
projda=6424(8i^)=83(8i^)=3i^
The projection of a on c+2j^ is 3i^.