Solveeit Logo

Question

Question: Let $\mathbb{R}$ denote the set of all real numbers. Define the function $f: \mathbb{R} \rightarrow ...

Let R\mathbb{R} denote the set of all real numbers. Define the function f:RRf: \mathbb{R} \rightarrow \mathbb{R} by

f(x)={22x2x2sin1xif x0,2if x=0.f(x) = \begin{cases} 2-2x^2 - x^2\sin{\frac{1}{x}} \quad \text{if } x \neq 0, \\ 2 \quad \text{if } x = 0. \end{cases}

Then which one of the following statements is TRUE?

A

The function ff is NOT differentiable at x=0x=0

B

There is a positive real number δ\delta, such that ff is a decreasing function on the interval (0,δ)(0, \delta)

C

For any positive real number δ\delta, the function ff is NOT an increasing function on the interval (δ,0)(-\delta, 0)

D

x=0x=0 is a point of local minima of ff

Answer

For any positive real number δ\delta, the function ff is NOT an increasing function on the interval (δ,0)(-\delta, 0).

Explanation

Solution

The function is defined as

f(x)={22x2x2sin1xif x0,2if x=0.f(x) = \begin{cases} 2-2x^2 - x^2\sin{\frac{1}{x}} \quad \text{if } x \neq 0, \\ 2 \quad \text{if } x = 0. \end{cases}

Option (A): The function ff is NOT differentiable at x=0x=0.

We calculate the derivative at x=0x=0 using the definition: f(0)=limh0f(0+h)f(0)h=limh0(22h2h2sin1h)2h=limh02h2h2sin1hh=limh0(2hhsin1h)f'(0) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{(2 - 2h^2 - h^2\sin{\frac{1}{h}}) - 2}{h} = \lim_{h \to 0} \frac{-2h^2 - h^2\sin{\frac{1}{h}}}{h} = \lim_{h \to 0} (-2h - h\sin{\frac{1}{h}}).

Since 1sin1h1-1 \le \sin{\frac{1}{h}} \le 1, we have hhsin1hh-|h| \le h\sin{\frac{1}{h}} \le |h|. By the Squeeze Theorem, limh0hsin1h=0\lim_{h \to 0} h\sin{\frac{1}{h}} = 0.

Thus, f(0)=limh0(2h)limh0(hsin1h)=00=0f'(0) = \lim_{h \to 0} (-2h) - \lim_{h \to 0} (h\sin{\frac{1}{h}}) = 0 - 0 = 0.

The derivative at x=0x=0 exists and is equal to 0. So, ff is differentiable at x=0x=0. Option (A) is false.

Option (B): There is a positive real number δ\delta, such that ff is a decreasing function on the interval (0,δ)(0, \delta).

For x0x \neq 0, the derivative is f(x)=ddx(22x2x2sin1x)=4x(2xsin1x+x2cos1x(1x2))=4x2xsin1x+cos1xf'(x) = \frac{d}{dx}(2-2x^2-x^2\sin{\frac{1}{x}}) = -4x - (2x\sin{\frac{1}{x}} + x^2\cos{\frac{1}{x}}(-\frac{1}{x^2})) = -4x - 2x\sin{\frac{1}{x}} + \cos{\frac{1}{x}}.

For ff to be decreasing on (0,δ)(0, \delta), we need f(x)<0f'(x) < 0 for all x(0,δ)x \in (0, \delta).

f(x)=cos1x4x2xsin1xf'(x) = \cos{\frac{1}{x}} - 4x - 2x\sin{\frac{1}{x}}.

As x0+x \to 0^+, the terms 4x-4x and 2xsin1x-2x\sin{\frac{1}{x}} approach 0. The term cos1x\cos{\frac{1}{x}} oscillates between -1 and 1.

Consider values of xx where 1x=2nπ\frac{1}{x} = 2n\pi for large positive integer nn. Then x=12nπx = \frac{1}{2n\pi}. As nn \to \infty, x0+x \to 0^+.

For these values of xx, cos1x=cos(2nπ)=1\cos{\frac{1}{x}} = \cos(2n\pi) = 1 and sin1x=sin(2nπ)=0\sin{\frac{1}{x}} = \sin(2n\pi) = 0.

f(x)=14x2x(0)=14xf'(x) = 1 - 4x - 2x(0) = 1 - 4x.

For any δ>0\delta > 0, we can choose nn large enough such that x=12nπ<δx = \frac{1}{2n\pi} < \delta. For such xx, f(x)=142nπ=12nπf'(x) = 1 - \frac{4}{2n\pi} = 1 - \frac{2}{n\pi}.

If nn is large enough, 12nπ1 - \frac{2}{n\pi} is positive and close to 1. For example, if n1n \ge 1, 12nπ>12π>01 - \frac{2}{n\pi} > 1 - \frac{2}{\pi} > 0.

Since there are values of xx in any interval (0,δ)(0, \delta) where f(x)>0f'(x) > 0, ff is not decreasing on any interval (0,δ)(0, \delta). Option (B) is false.

Option (C): For any positive real number δ\delta, the function ff is NOT an increasing function on the interval (δ,0)(-\delta, 0).

For ff to be increasing on (δ,0)(-\delta, 0), we need f(x)>0f'(x) > 0 for all x(δ,0)x \in (-\delta, 0).

Let x(δ,0)x \in (-\delta, 0), so x=yx = -y for y(0,δ)y \in (0, \delta).

f(x)=f(y)=4(y)2(y)sin1y+cos1y=4y+2ysin(1y)+cos(1y)=4y2ysin(1y)+cos(1y)f'(x) = f'(-y) = -4(-y) - 2(-y)\sin{\frac{1}{-y}} + \cos{\frac{1}{-y}} = 4y + 2y\sin(-\frac{1}{y}) + \cos(\frac{1}{y}) = 4y - 2y\sin(\frac{1}{y}) + \cos(\frac{1}{y}).

f(y)=cos(1y)+4y2ysin(1y)f'(-y) = \cos(\frac{1}{y}) + 4y - 2y\sin(\frac{1}{y}).

As y0+y \to 0^+, the terms 4y4y and 2ysin(1y)-2y\sin(\frac{1}{y}) approach 0. The term cos(1y)\cos(\frac{1}{y}) oscillates between -1 and 1.

Consider values of yy where 1y=(2n+1)π\frac{1}{y} = (2n+1)\pi for large positive integer nn. Then y=1(2n+1)πy = \frac{1}{(2n+1)\pi}. As nn \to \infty, y0+y \to 0^+.

For these values of yy, cos(1y)=cos((2n+1)π)=1\cos(\frac{1}{y}) = \cos((2n+1)\pi) = -1 and sin(1y)=sin((2n+1)π)=0\sin(\frac{1}{y}) = \sin((2n+1)\pi) = 0.

f(y)=1+4y2y(0)=1+4yf'(-y) = -1 + 4y - 2y(0) = -1 + 4y.

For any δ>0\delta > 0, we can choose nn large enough such that y=1(2n+1)π<δy = \frac{1}{(2n+1)\pi} < \delta. For this yy, x=y(δ,0)x = -y \in (-\delta, 0).

The value of the derivative is f(x)=1+4y=1+4(2n+1)πf'(x) = -1 + 4y = -1 + \frac{4}{(2n+1)\pi}.

We can choose nn large enough such that 4(2n+1)π1\frac{4}{(2n+1)\pi} \le 1 (e.g., 2n+14/π1.272n+1 \ge 4/\pi \approx 1.27, so n1n \ge 1). For such nn, f(x)=1+4(2n+1)π0f'(x) = -1 + \frac{4}{(2n+1)\pi} \le 0.

Since there are values of xx in any interval (δ,0)(-\delta, 0) where f(x)0f'(x) \le 0, ff is NOT an increasing function on the interval (δ,0)(-\delta, 0). Option (C) is true.

Option (D): x=0x=0 is a point of local minima of ff.

For x=0x=0 to be a local minima, there must exist some δ>0\delta > 0 such that f(x)f(0)f(x) \ge f(0) for all x(δ,δ)x \in (-\delta, \delta).

f(0)=2f(0) = 2. We need f(x)2f(x) \ge 2 for x(δ,δ),x0x \in (-\delta, \delta), x \neq 0.

22x2x2sin1x22 - 2x^2 - x^2\sin{\frac{1}{x}} \ge 2

2x2x2sin1x0-2x^2 - x^2\sin{\frac{1}{x}} \ge 0

x2(2+sin1x)0-x^2(2 + \sin{\frac{1}{x}}) \ge 0.

Since x20x^2 \ge 0, we need (2+sin1x)0-(2 + \sin{\frac{1}{x}}) \ge 0, which means 2+sin1x02 + \sin{\frac{1}{x}} \le 0.

However, 1sin1x1-1 \le \sin{\frac{1}{x}} \le 1, so 12+sin1x31 \le 2 + \sin{\frac{1}{x}} \le 3.

Thus, 2+sin1x2 + \sin{\frac{1}{x}} is always positive.

So, x2(2+sin1x)0-x^2(2 + \sin{\frac{1}{x}}) \le 0 for x0x \neq 0.

This means f(x)=22x2x2sin1x2=f(0)f(x) = 2 - 2x^2 - x^2\sin{\frac{1}{x}} \le 2 = f(0) for x0x \neq 0.

For x0x \neq 0, f(x)=2x2(2+sin(1/x))f(x) = 2 - x^2(2 + \sin(1/x)). Since x2>0x^2 > 0 and 2+sin(1/x)21=1>02 + \sin(1/x) \ge 2-1=1 > 0, we have x2(2+sin(1/x))>0x^2(2 + \sin(1/x)) > 0.

Thus, f(x)=2(positive quantity)<2=f(0)f(x) = 2 - (\text{positive quantity}) < 2 = f(0) for all x0x \neq 0.

This means f(x)<f(0)f(x) < f(0) for all x0x \neq 0.

Therefore, x=0x=0 is a point of strict local maxima, not local minima. Option (D) is false.

The only true statement is (C).