Solveeit Logo

Question

Question: Let $g(x) = \tan^{-1}|x| - \cot^{-1}|x|$, $f(x) = \frac{[x]}{[x+1]}\{x\}$, $h(x) = |g(f(x))|$ where ...

Let g(x)=tan1xcot1xg(x) = \tan^{-1}|x| - \cot^{-1}|x|, f(x)=[x][x+1]{x}f(x) = \frac{[x]}{[x+1]}\{x\}, h(x)=g(f(x))h(x) = |g(f(x))| where {x}\{x\} denotes fractional part and [x][x] denotes the integral part then which of the following holds good?

A

h is continuous at x = 0

B

h is discontinuous at x = 0

C

h (0-) = π/2\pi/2

D

h(0+) = –π/2\pi/2

Answer

B

Explanation

Solution

The functions are given by g(x)=tan1xcot1xg(x) = \tan^{-1}|x| - \cot^{-1}|x|, f(x)=[x][x+1]{x}f(x) = \frac{[x]}{[x+1]}\{x\}, and h(x)=g(f(x))h(x) = |g(f(x))|. We need to analyze the continuity of h(x)h(x) at x=0x=0.

First, let's simplify g(x)g(x). Using the identity tan1y+cot1y=π2\tan^{-1}y + \cot^{-1}y = \frac{\pi}{2}, we have cot1x=π2tan1x\cot^{-1}|x| = \frac{\pi}{2} - \tan^{-1}|x|. So, g(x)=tan1x(π2tan1x)=2tan1xπ2g(x) = \tan^{-1}|x| - (\frac{\pi}{2} - \tan^{-1}|x|) = 2\tan^{-1}|x| - \frac{\pi}{2}. The function g(y)=2tan1yπ2g(y) = 2\tan^{-1}|y| - \frac{\pi}{2} is defined and continuous for all yRy \in \mathbb{R}.

Next, let's analyze f(x)=[x][x+1]{x}f(x) = \frac{[x]}{[x+1]}\{x\} around x=0x=0. The function f(x)f(x) is defined only when the denominator [x+1]0[x+1] \ne 0. [x+1]=0[x+1] = 0 if and only if 0x+1<10 \le x+1 < 1, which means 1x<0-1 \le x < 0. So, the domain of f(x)f(x) is R[1,0)\mathbb{R} \setminus [-1, 0).

Let's evaluate f(x)f(x) at x=0x=0 and its limits as x0x \to 0. At x=0x=0: [0]=0[0]=0, [0+1]=[1]=1[0+1]=[1]=1, {0}=0\{0\}=0. f(0)=[0][0+1]{0}=010=0f(0) = \frac{[0]}{[0+1]}\{0\} = \frac{0}{1} \cdot 0 = 0.

For the right-hand limit as x0+x \to 0^+: Consider x(0,ϵ)x \in (0, \epsilon) for a small ϵ>0\epsilon > 0, e.g., ϵ<1\epsilon < 1. In this interval, [x]=0[x]=0, [x+1]=1[x+1]=1, {x}=x\{x\}=x. f(x)=01x=0f(x) = \frac{0}{1} \cdot x = 0. So, limx0+f(x)=limx0+0=0\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} 0 = 0.

For the left-hand limit as x0x \to 0^-: Consider x(ϵ,0)x \in (-\epsilon, 0) for a small ϵ>0\epsilon > 0. If 0<ϵ10 < \epsilon \le 1, then for x(ϵ,0)x \in (-\epsilon, 0), we have 1x<0-1 \le x < 0. In this interval, [x+1]=0[x+1]=0. Since the denominator [x+1]=0[x+1]=0 for x[1,0)x \in [-1, 0), the function f(x)f(x) is undefined for xx in any left neighborhood of 0 (specifically, for x[1,0)x \in [-1, 0)). Therefore, the left-hand limit limx0f(x)\lim_{x \to 0^-} f(x) does not exist.

Now let's analyze h(x)=g(f(x))h(x) = |g(f(x))| around x=0x=0. The domain of h(x)h(x) is the same as the domain of f(x)f(x), which is R[1,0)\mathbb{R} \setminus [-1, 0).

Evaluate h(x)h(x) at x=0x=0: h(0)=g(f(0))=g(0)h(0) = |g(f(0))| = |g(0)|. g(0)=2tan10π2=2tan1(0)π2=2(0)π2=π2g(0) = 2\tan^{-1}|0| - \frac{\pi}{2} = 2\tan^{-1}(0) - \frac{\pi}{2} = 2(0) - \frac{\pi}{2} = -\frac{\pi}{2}. h(0)=π2=π2h(0) = |-\frac{\pi}{2}| = \frac{\pi}{2}.

Evaluate the right-hand limit of h(x)h(x) as x0+x \to 0^+: limx0+h(x)=limx0+g(f(x))\lim_{x \to 0^+} h(x) = \lim_{x \to 0^+} |g(f(x))|. As x0+x \to 0^+, f(x)0f(x) \to 0. Specifically, for x(0,ϵ)x \in (0, \epsilon), f(x)=0f(x) = 0. So, limx0+h(x)=g(limx0+f(x))=g(0)=π2=π2\lim_{x \to 0^+} h(x) = |g(\lim_{x \to 0^+} f(x))| = |g(0)| = |-\frac{\pi}{2}| = \frac{\pi}{2}. Alternatively, for x(0,ϵ)x \in (0, \epsilon), h(x)=g(0)=π2h(x) = |g(0)| = \frac{\pi}{2}. So limx0+h(x)=π2\lim_{x \to 0^+} h(x) = \frac{\pi}{2}.

Evaluate the left-hand limit of h(x)h(x) as x0x \to 0^-: limx0h(x)=limx0g(f(x))\lim_{x \to 0^-} h(x) = \lim_{x \to 0^-} |g(f(x))|. Since f(x)f(x) is undefined for x[1,0)x \in [-1, 0), g(f(x))g(f(x)) and hence h(x)h(x) are undefined for xx in any left neighborhood of 0. Therefore, the left-hand limit limx0h(x)\lim_{x \to 0^-} h(x) does not exist.

For h(x)h(x) to be continuous at x=0x=0, the limit limx0h(x)\lim_{x \to 0} h(x) must exist and be equal to h(0)h(0). The limit limx0h(x)\lim_{x \to 0} h(x) exists if and only if the left-hand limit and the right-hand limit exist and are equal. We have limx0+h(x)=π2\lim_{x \to 0^+} h(x) = \frac{\pi}{2}, but limx0h(x)\lim_{x \to 0^-} h(x) does not exist. Since the left-hand limit does not exist, the limit limx0h(x)\lim_{x \to 0} h(x) does not exist. Thus, h(x)h(x) is discontinuous at x=0x=0.

Let's check the options: (A) h is continuous at x = 0. False. (B) h is discontinuous at x = 0. True. (C) h (0-) = π/2\pi/2. This means limx0h(x)=π/2\lim_{x \to 0^-} h(x) = \pi/2. False, the limit does not exist. (D) h(0+) = –π/2\pi/2. This means limx0+h(x)=π/2\lim_{x \to 0^+} h(x) = -\pi/2. False, the limit is π/2\pi/2.

The only correct statement is that hh is discontinuous at x=0x=0.