Solveeit Logo

Question

Question: Let F and G be inverse functions respectively of $f(x) = (2x-3\pi)^5 + \frac{4x}{3} + \cos x$ and $...

Let F and G be inverse functions respectively of

f(x)=(2x3π)5+4x3+cosxf(x) = (2x-3\pi)^5 + \frac{4x}{3} + \cos x and g(x)=ex+2xg(x) = e^x + 2x.

Then 7F(2π)+25G(ln3)7F'(2\pi) + 25G'(\ln 3) is equal to

A

10

B

7

C

9

D

8

Answer

8

Explanation

Solution

Let F and G be inverse functions of f(x)f(x) and g(x)g(x) respectively. The derivative of an inverse function is given by the formula F(y)=1f(x)F'(y) = \frac{1}{f'(x)} where y=f(x)y = f(x). Similarly, G(y)=1g(x)G'(y) = \frac{1}{g'(x)} where y=g(x)y = g(x).

First, we need to find F(2π)F'(2\pi). Let y=2πy = 2\pi. We need to find x0x_0 such that f(x0)=2πf(x_0) = 2\pi. f(x)=(2x3π)5+4x3+cosxf(x) = (2x-3\pi)^5 + \frac{4x}{3} + \cos x. We check if there is a simple value of xx for which f(x)=2πf(x) = 2\pi. Let's try x=3π2x = \frac{3\pi}{2}. f(3π2)=(2(3π2)3π)5+4(3π2)3+cos(3π2)f(\frac{3\pi}{2}) = (2(\frac{3\pi}{2})-3\pi)^5 + \frac{4(\frac{3\pi}{2})}{3} + \cos(\frac{3\pi}{2}) f(3π2)=(3π3π)5+6π3+0f(\frac{3\pi}{2}) = (3\pi-3\pi)^5 + \frac{6\pi}{3} + 0 f(3π2)=05+2π+0=2πf(\frac{3\pi}{2}) = 0^5 + 2\pi + 0 = 2\pi. So, x0=3π2x_0 = \frac{3\pi}{2} is the value such that f(x0)=2πf(x_0) = 2\pi.

Now we need to find f(x)f'(x). f(x)=ddx((2x3π)5+4x3+cosx)f'(x) = \frac{d}{dx}\left((2x-3\pi)^5 + \frac{4x}{3} + \cos x\right) f(x)=5(2x3π)4ddx(2x3π)+43ddx(x)+ddx(cosx)f'(x) = 5(2x-3\pi)^4 \cdot \frac{d}{dx}(2x-3\pi) + \frac{4}{3} \cdot \frac{d}{dx}(x) + \frac{d}{dx}(\cos x) f(x)=5(2x3π)42+431sinxf'(x) = 5(2x-3\pi)^4 \cdot 2 + \frac{4}{3} \cdot 1 - \sin x f(x)=10(2x3π)4+43sinxf'(x) = 10(2x-3\pi)^4 + \frac{4}{3} - \sin x.

Now evaluate f(x0)f'(x_0) at x0=3π2x_0 = \frac{3\pi}{2}. f(3π2)=10(2(3π2)3π)4+43sin(3π2)f'(\frac{3\pi}{2}) = 10(2(\frac{3\pi}{2})-3\pi)^4 + \frac{4}{3} - \sin(\frac{3\pi}{2}) f(3π2)=10(3π3π)4+43(1)f'(\frac{3\pi}{2}) = 10(3\pi-3\pi)^4 + \frac{4}{3} - (-1) f(3π2)=10(0)4+43+1=0+43+33=73f'(\frac{3\pi}{2}) = 10(0)^4 + \frac{4}{3} + 1 = 0 + \frac{4}{3} + \frac{3}{3} = \frac{7}{3}.

Using the inverse function derivative formula, F(2π)=1f(3π/2)=17/3=37F'(2\pi) = \frac{1}{f'(3\pi/2)} = \frac{1}{7/3} = \frac{3}{7}. So, 7F(2π)=737=37F'(2\pi) = 7 \cdot \frac{3}{7} = 3.

Next, we need to find G(ln3)G'(\ln 3). Let y=ln3y = \ln 3. We need to find x1x_1 such that g(x1)=ln3g(x_1) = \ln 3. g(x)=ex+2xg(x) = e^x + 2x. We need to solve ex1+2x1=ln3e^{x_1} + 2x_1 = \ln 3 for x1x_1.

It seems there is a high probability of a typo in the question. Assuming the question intended the second term to be 25G(y1)25G'(y_1) where y1=g(ln3)y_1 = g(\ln 3), the result is 8. Let's assume the typo is in the argument of G'. Let the argument be y1y_1 such that the corresponding x1x_1 is simple, say x1=0x_1=0. If x1=0x_1=0, g(0)=1g(0)=1. g(0)=3g'(0)=3. G(1)=1/3G'(1) = 1/3. 25G(1)=25/325G'(1) = 25/3. 3+25/33+25/3 \neq any option. If x1=1x_1=1, g(1)=e+2g(1)=e+2. g(1)=e+2g'(1)=e+2. G(e+2)=1/(e+2)G'(e+2) = 1/(e+2). 25G(e+2)=25/(e+2)25G'(e+2) = 25/(e+2). 3+25/(e+2)3+25/(e+2) \neq any option.

Given the strong indication from the first term's calculation and the options, it is most probable that the second term 25G(ln3)25G'(\ln 3) was intended to be 25G(g(ln3))25G'(g(\ln 3)). If y1=g(ln3)y_1 = g(\ln 3), then G(y1)=1g(ln3)G'(y_1) = \frac{1}{g'(\ln 3)}. g(x)=ex+2g'(x) = e^x + 2. g(ln3)=eln3+2=3+2=5g'(\ln 3) = e^{\ln 3} + 2 = 3 + 2 = 5. So G(g(ln3))=15G'(g(\ln 3)) = \frac{1}{5}. Then 25G(g(ln3))=2515=525G'(g(\ln 3)) = 25 \cdot \frac{1}{5} = 5. The expression becomes 7F(2π)+25G(g(ln3))=3+5=87F'(2\pi) + 25G'(g(\ln 3)) = 3 + 5 = 8. This matches option (D). Assuming this intended meaning, the answer is 8.