Solveeit Logo

Question

Question: Let a>0, d>0. Find the value of determinant $\begin{vmatrix} \frac{1}{a} & \frac{1}{(a + d)} & \fra...

Let a>0, d>0. Find the value of determinant

1a1(a+d)1(a+2d)1(a+d)1(a+2d)1(a+3d)1(a+2d)1(a+3d)1(a+4d)\begin{vmatrix} \frac{1}{a} & \frac{1}{(a + d)} & \frac{1}{(a + 2d)}\\ \frac{1}{(a + d)} & \frac{1}{(a + 2d)} & \frac{1}{(a + 3d)}\\ \frac{1}{(a + 2d)} & \frac{1}{(a + 3d)} & \frac{1}{(a + 4d)} \end{vmatrix}

Answer

4d6a(a+d)2(a+2d)3(a+3d)2(a+4d)\frac{4d^6}{a(a+d)^2(a+2d)^3(a+3d)^2(a+4d)}

Explanation

Solution

Let the given determinant be Δ\Delta.

Δ=1a1(a+d)1(a+2d)1(a+d)1(a+2d)1(a+3d)1(a+2d)1(a+3d)1(a+4d)\Delta = \begin{vmatrix} \frac{1}{a} & \frac{1}{(a + d)} & \frac{1}{(a + 2d)}\\ \frac{1}{(a + d)} & \frac{1}{(a + 2d)} & \frac{1}{(a + 3d)}\\ \frac{1}{(a + 2d)} & \frac{1}{(a + 3d)} & \frac{1}{(a + 4d)} \end{vmatrix}

Apply the column operations C2C2C1C_2 \to C_2 - C_1 and C3C3C2C_3 \to C_3 - C_2.

Δ=1ada(a+d)d(a+d)(a+2d)1a+dd(a+d)(a+2d)d(a+2d)(a+3d)1a+2dd(a+2d)(a+3d)d(a+3d)(a+4d)\Delta = \begin{vmatrix} \frac{1}{a} & \frac{-d}{a(a+d)} & \frac{-d}{(a+d)(a+2d)}\\ \frac{1}{a+d} & \frac{-d}{(a+d)(a+2d)} & \frac{-d}{(a+2d)(a+3d)}\\ \frac{1}{a+2d} & \frac{-d}{(a+2d)(a+3d)} & \frac{-d}{(a+3d)(a+4d)} \end{vmatrix}

Take out common factors (d)(-d) from C2C_2 and C3C_3:

Δ=(d)21a1a(a+d)1(a+d)(a+2d)1a+d1(a+d)(a+2d)1(a+2d)(a+3d)1a+2d1(a+2d)(a+3d)1(a+3d)(a+4d)\Delta = (-d)^2 \begin{vmatrix} \frac{1}{a} & \frac{1}{a(a+d)} & \frac{1}{(a+d)(a+2d)}\\ \frac{1}{a+d} & \frac{1}{(a+d)(a+2d)} & \frac{1}{(a+2d)(a+3d)}\\ \frac{1}{a+2d} & \frac{1}{(a+2d)(a+3d)} & \frac{1}{(a+3d)(a+4d)} \end{vmatrix}

Apply row operations R2R2R1R_2 \to R_2 - R_1 and R3R3R2R_3 \to R_3 - R_2:

Δ=d21a1a(a+d)1(a+d)(a+2d)da(a+d)2da(a+d)(a+2d)2d(a+d)(a+2d)(a+3d)d(a+d)(a+2d)2d(a+d)(a+2d)(a+3d)2d(a+2d)(a+3d)(a+4d)\Delta = d^2 \begin{vmatrix} \frac{1}{a} & \frac{1}{a(a+d)} & \frac{1}{(a+d)(a+2d)}\\ \frac{-d}{a(a+d)} & \frac{-2d}{a(a+d)(a+2d)} & \frac{-2d}{(a+d)(a+2d)(a+3d)}\\ \frac{-d}{(a+d)(a+2d)} & \frac{-2d}{(a+d)(a+2d)(a+3d)} & \frac{-2d}{(a+2d)(a+3d)(a+4d)} \end{vmatrix}

Take out common factors (d)(-d) from R2R_2 and R3R_3:

Δ=d2(d)21a1a(a+d)1(a+d)(a+2d)1a(a+d)2a(a+d)(a+2d)2(a+d)(a+2d)(a+3d)1(a+d)(a+2d)2(a+d)(a+2d)(a+3d)2(a+2d)(a+3d)(a+4d)\Delta = d^2 (-d)^2 \begin{vmatrix} \frac{1}{a} & \frac{1}{a(a+d)} & \frac{1}{(a+d)(a+2d)}\\ \frac{1}{a(a+d)} & \frac{2}{a(a+d)(a+2d)} & \frac{2}{(a+d)(a+2d)(a+3d)}\\ \frac{1}{(a+d)(a+2d)} & \frac{2}{(a+d)(a+2d)(a+3d)} & \frac{2}{(a+2d)(a+3d)(a+4d)} \end{vmatrix}

Take out common factors from columns: 1a\frac{1}{a} from C1C_1, 1a+d\frac{1}{a+d} from C2C_2, 1(a+2d)\frac{1}{(a+2d)} from C3C_3.

The common factors are: 1a\frac{1}{a}, 1a+d\frac{1}{a+d}, 1a+2d\frac{1}{a+2d} from R1,R2,R3R_1, R_2, R_3 respectively. And 1a\frac{1}{a}, 1a+d\frac{1}{a+d}, 1a+2d\frac{1}{a+2d} from C1,C2,C3C_1, C_2, C_3 respectively is incorrect.

Let's restart from the R2R2R1R_2 \to R_2 - R_1 and R3R3R1R_3 \to R_3 - R_1 step.

Δ=1a1a+d1a+2d1a+d1a+2d1a+3d1a+2d1a+3d1a+4d\Delta = \begin{vmatrix} \frac{1}{a} & \frac{1}{a+d} & \frac{1}{a+2d}\\ \frac{1}{a+d} & \frac{1}{a+2d} & \frac{1}{a+3d}\\ \frac{1}{a+2d} & \frac{1}{a+3d} & \frac{1}{a+4d} \end{vmatrix}

Apply R2R2R1R_2 \to R_2 - R_1 and R3R3R1R_3 \to R_3 - R_1:

Δ=1a1a+d1a+2dda(a+d)d(a+d)(a+2d)d(a+2d)(a+3d)2da(a+2d)2d(a+d)(a+3d)2d(a+2d)(a+4d)\Delta = \begin{vmatrix} \frac{1}{a} & \frac{1}{a+d} & \frac{1}{a+2d}\\ \frac{-d}{a(a+d)} & \frac{-d}{(a+d)(a+2d)} & \frac{-d}{(a+2d)(a+3d)}\\ \frac{-2d}{a(a+2d)} & \frac{-2d}{(a+d)(a+3d)} & \frac{-2d}{(a+2d)(a+4d)} \end{vmatrix}

Take out (d)(-d) from R2R_2 and (2d)(-2d) from R3R_3:

Δ=(d)(2d)1a1a+d1a+2d1a(a+d)1(a+d)(a+2d)1(a+2d)(a+3d)1a(a+2d)1(a+d)(a+3d)1(a+2d)(a+4d)\Delta = (-d)(-2d) \begin{vmatrix} \frac{1}{a} & \frac{1}{a+d} & \frac{1}{a+2d}\\ \frac{1}{a(a+d)} & \frac{1}{(a+d)(a+2d)} & \frac{1}{(a+2d)(a+3d)}\\ \frac{1}{a(a+2d)} & \frac{1}{(a+d)(a+3d)} & \frac{1}{(a+2d)(a+4d)} \end{vmatrix} Δ=2d21a1a+d1a+2d1a(a+d)1(a+d)(a+2d)1(a+2d)(a+3d)1a(a+2d)1(a+d)(a+3d)1(a+2d)(a+4d)\Delta = 2d^2 \begin{vmatrix} \frac{1}{a} & \frac{1}{a+d} & \frac{1}{a+2d}\\ \frac{1}{a(a+d)} & \frac{1}{(a+d)(a+2d)} & \frac{1}{(a+2d)(a+3d)}\\ \frac{1}{a(a+2d)} & \frac{1}{(a+d)(a+3d)} & \frac{1}{(a+2d)(a+4d)} \end{vmatrix}

Take out common factors from columns: 1a\frac{1}{a} from C1C_1, 1a+d\frac{1}{a+d} from C2C_2, 1a+2d\frac{1}{a+2d} from C3C_3:

Δ=2d21a1a+d1a+2d1111a+d1a+2d1a+3d1a+2d1a+3d1a+4d\Delta = 2d^2 \cdot \frac{1}{a} \cdot \frac{1}{a+d} \cdot \frac{1}{a+2d} \begin{vmatrix} 1 & 1 & 1\\ \frac{1}{a+d} & \frac{1}{a+2d} & \frac{1}{a+3d}\\ \frac{1}{a+2d} & \frac{1}{a+3d} & \frac{1}{a+4d} \end{vmatrix}

Let D=1111a+d1a+2d1a+3d1a+2d1a+3d1a+4dD' = \begin{vmatrix} 1 & 1 & 1\\ \frac{1}{a+d} & \frac{1}{a+2d} & \frac{1}{a+3d}\\ \frac{1}{a+2d} & \frac{1}{a+3d} & \frac{1}{a+4d} \end{vmatrix}.

Apply C2C2C1C_2 \to C_2 - C_1 and C3C3C1C_3 \to C_3 - C_1:

D=1001a+d1a+2d1a+d1a+3d1a+d1a+2d1a+3d1a+2d1a+4d1a+2dD' = \begin{vmatrix} 1 & 0 & 0\\ \frac{1}{a+d} & \frac{1}{a+2d} - \frac{1}{a+d} & \frac{1}{a+3d} - \frac{1}{a+d}\\ \frac{1}{a+2d} & \frac{1}{a+3d} - \frac{1}{a+2d} & \frac{1}{a+4d} - \frac{1}{a+2d} \end{vmatrix}

Expand along R1R_1:

D=d(a+d)(a+2d)2d(a+d)(a+3d)d(a+2d)(a+3d)2d(a+2d)(a+4d)D' = \begin{vmatrix} \frac{-d}{(a+d)(a+2d)} & \frac{-2d}{(a+d)(a+3d)}\\ \frac{-d}{(a+2d)(a+3d)} & \frac{-2d}{(a+2d)(a+4d)} \end{vmatrix}

Take out (d)(-d) from C1C_1 and (2d)(-2d) from C2C_2:

D=(d)(2d)1(a+d)(a+2d)1(a+d)(a+3d)1(a+2d)(a+3d)1(a+2d)(a+4d)D' = (-d)(-2d) \begin{vmatrix} \frac{1}{(a+d)(a+2d)} & \frac{1}{(a+d)(a+3d)}\\ \frac{1}{(a+2d)(a+3d)} & \frac{1}{(a+2d)(a+4d)} \end{vmatrix} D=2d2[1(a+d)(a+2d)1(a+2d)(a+4d)1(a+d)(a+3d)1(a+2d)(a+3d)]D' = 2d^2 \left[ \frac{1}{(a+d)(a+2d)} \cdot \frac{1}{(a+2d)(a+4d)} - \frac{1}{(a+d)(a+3d)} \cdot \frac{1}{(a+2d)(a+3d)} \right] D=2d2[1(a+d)(a+2d)2(a+4d)1(a+d)(a+2d)(a+3d)2]D' = 2d^2 \left[ \frac{1}{(a+d)(a+2d)^2(a+4d)} - \frac{1}{(a+d)(a+2d)(a+3d)^2} \right] D=2d2(a+d)(a+2d)[1(a+2d)(a+4d)1(a+3d)2]D' = \frac{2d^2}{(a+d)(a+2d)} \left[ \frac{1}{(a+2d)(a+4d)} - \frac{1}{(a+3d)^2} \right] D=2d2(a+d)(a+2d)[(a+3d)2(a+2d)(a+4d)(a+2d)(a+4d)(a+3d)2]D' = \frac{2d^2}{(a+d)(a+2d)} \left[ \frac{(a+3d)^2 - (a+2d)(a+4d)}{(a+2d)(a+4d)(a+3d)^2} \right]

The numerator of the bracket term is: (a+3d)2(a+2d)(a+4d)=(a2+6ad+9d2)(a2+4ad+2ad+8d2)(a+3d)^2 - (a+2d)(a+4d) = (a^2 + 6ad + 9d^2) - (a^2 + 4ad + 2ad + 8d^2) =a2+6ad+9d2a26ad8d2=d2= a^2 + 6ad + 9d^2 - a^2 - 6ad - 8d^2 = d^2

So,

D=2d2(a+d)(a+2d)[d2(a+2d)(a+4d)(a+3d)2]=2d4(a+d)(a+2d)2(a+3d)2(a+4d)D' = \frac{2d^2}{(a+d)(a+2d)} \left[ \frac{d^2}{(a+2d)(a+4d)(a+3d)^2} \right] = \frac{2d^4}{(a+d)(a+2d)^2(a+3d)^2(a+4d)}

Substitute DD' back into the expression for Δ\Delta:

Δ=2d21a(a+d)(a+2d)2d4(a+d)(a+2d)2(a+3d)2(a+4d)\Delta = 2d^2 \cdot \frac{1}{a(a+d)(a+2d)} \cdot \frac{2d^4}{(a+d)(a+2d)^2(a+3d)^2(a+4d)} Δ=4d6a(a+d)2(a+2d)3(a+3d)2(a+4d)\Delta = \frac{4d^6}{a(a+d)^2(a+2d)^3(a+3d)^2(a+4d)}

The final answer is 4d6a(a+d)2(a+2d)3(a+3d)2(a+4d)\boxed{\frac{4d^6}{a(a+d)^2(a+2d)^3(a+3d)^2(a+4d)}}.