Solveeit Logo

Question

Question: If $y=\tan^{-1}x+\cot^{-1}x+\sec^{-1}x$, then $y=$?...

If y=tan1x+cot1x+sec1xy=\tan^{-1}x+\cot^{-1}x+\sec^{-1}x, then y=y=?

A

(0,x)(0,x)

B

[π2,3π2]\left[\frac{\pi}{2},\frac{3\pi}{2}\right]

C

(0,x)(0,x)

D

[0,π2]\left[0,\frac{\pi}{2}\right]

Answer

[π2,3π2]\left[\frac{\pi}{2},\frac{3\pi}{2}\right]

Explanation

Solution

The function is y=tan1x+cot1x+sec1xy=\tan^{-1}x+\cot^{-1}x+\sec^{-1}x. The domain of the function is (,1][1,)(-\infty, -1] \cup [1, \infty). Using the identity tan1x+cot1x=π2\tan^{-1}x+\cot^{-1}x = \frac{\pi}{2}, the function simplifies to y=π2+sec1xy = \frac{\pi}{2} + \sec^{-1}x for xx in its domain. The range of sec1x\sec^{-1}x for x(,1][1,)x \in (-\infty, -1] \cup [1, \infty) is [0,π2)(π2,π][0, \frac{\pi}{2}) \cup (\frac{\pi}{2}, \pi]. Adding π2\frac{\pi}{2} to this range gives the range of yy as [π2,π)(π,3π2][\frac{\pi}{2}, \pi) \cup (\pi, \frac{3\pi}{2}]. This range is a subset of the interval [π2,3π2][\frac{\pi}{2}, \frac{3\pi}{2}]. Among the given options, [π2,3π2][\frac{\pi}{2}, \frac{3\pi}{2}] is the interval that contains the range of yy.