Solveeit Logo

Question

Question: If x>y>1 then the maximum value of $\log_x (\frac{x}{y}) + \log_y (\frac{y}{x})$ is equal to...

If x>y>1 then the maximum value of logx(xy)+logy(yx)\log_x (\frac{x}{y}) + \log_y (\frac{y}{x}) is equal to

A

-2

B

0

C

2

D

4

Answer

0

Explanation

Solution

Let

S=logx(xy)+logy(yx)S = \log_{x}\left(\frac{x}{y}\right) + \log_{y}\left(\frac{y}{x}\right)

Express in terms of natural logarithms:

logx(xy)=ln(x/y)lnx=lnxlnylnx=1lnylnx\log_{x}\left(\frac{x}{y}\right) = \frac{\ln(x/y)}{\ln x} = \frac{\ln x - \ln y}{\ln x} = 1 - \frac{\ln y}{\ln x}

logy(yx)=ln(y/x)lny=lnylnxlny=1lnxlny\log_{y}\left(\frac{y}{x}\right) = \frac{\ln(y/x)}{\ln y} = \frac{\ln y - \ln x}{\ln y} = 1 - \frac{\ln x}{\ln y}

Thus,

S=2(lnylnx+lnxlny)S = 2 - \left(\frac{\ln y}{\ln x} + \frac{\ln x}{\ln y}\right)

Let t=lnxlnyt = \frac{\ln x}{\ln y}. Note that since x>y>1x > y > 1, both lnx\ln x and lny\ln y are positive and t>1t > 1. Then:

lnylnx=1t\frac{\ln y}{\ln x} = \frac{1}{t}

and

S=2(t+1t)S = 2 - \left(t + \frac{1}{t}\right)

The minimum value of t+1tt + \frac{1}{t} for t>0t > 0 is 22 when t=1t = 1 (by AM-GM inequality). Since t>1t > 1, the closest we can get is as t1+t \to 1^{+}, which gives:

Smax=22=0S_{\text{max}} = 2 - 2 = 0