Solveeit Logo

Question

Question: If \(\sqrt[3]{a} + \sqrt[3]{b} + \sqrt[3]{c} = 0\) and \((a + b + c)^3 =\)...

If a3+b3+c3=0\sqrt[3]{a} + \sqrt[3]{b} + \sqrt[3]{c} = 0 and (a+b+c)3=(a + b + c)^3 =

A

abc

B

3abc

C

9ac

D

27abc

Answer

27abc

Explanation

Solution

Using the identity for three terms:

(x+y+z)3=x3+y3+z3+3(x+y)(y+z)(z+x).(x+y+z)^3 = x^3 + y^3 + z^3 + 3(x+y)(y+z)(z+x).

Let x=a3,y=b3,z=c3x = \sqrt[3]{a},\, y = \sqrt[3]{b},\, z = \sqrt[3]{c}.
Since x+y+z=0x+y+z=0, we have

x3+y3+z3=3xyz.x^3+y^3+z^3 = 3xyz.

That is,

a+b+c=3abc3.a + b + c = 3\sqrt[3]{abc}.

Cubing both sides gives

(a+b+c)3=27abc.(a+b+c)^3 = 27\,abc.