Question
Question: If $\lim_{x \to 1^+} \frac{(x-1)(6+\lambda \cos(x-1))+\mu \sin(1-x)}{(x-1)^3} = -1$, where $\lambda,...
If limx→1+(x−1)3(x−1)(6+λcos(x−1))+μsin(1−x)=−1, where λ,μ∈R, then λ+μ is equal to

A
17
B
18
C
19
D
20
Answer
18
Explanation
Solution
We substitute h=x−1 so that as x→1+, h→0+. The expression becomes:
h3h(6+λcosh)+μsin(1−x)Since sin(1−x)=sin(−h)=−sinh, the numerator transforms to:
h(6+λcosh)−μsinhStep 1: Taylor Series Expansion
For small h,
cosh=1−2h2+O(h4),sinh=h−6h3+O(h5)Step 2: Substitute the series into the numerator
h(6+λ(1−2h2))−μ(h−6h3)=6h+λh−2λh3−μh+6μh3=(6+λ−μ)h+(−2λ+6μ)h3Step 3: For the limit to be finite
The coefficient of h must be zero:
6+λ−μ=0⟹μ=6+λ.Now the numerator simplifies to:
(−2λ+6μ)h3.Taking the limit,
h→0limh3(−2λ+6μ)h3=−2λ+6μ=−1.Step 4: Substitute μ=6+λ and solve
−2λ+66+λ=−1.Multiply both sides by 6:
−3λ+6+λ=−6. −2λ+6=−6. −2λ=−12⟹λ=6.Then,
μ=6+λ=6+6=12.Thus,
λ+μ=6+12=18.