Solveeit Logo

Question

Question: A quantity $\alpha$ is defined as $\alpha = \frac{e^2}{4\pi\epsilon_0 c\hbar}$, where e is electric ...

A quantity α\alpha is defined as α=e24πϵ0c\alpha = \frac{e^2}{4\pi\epsilon_0 c\hbar}, where e is electric charge, =h2π\hbar = \frac{h}{2\pi} is the reduced Plancks constant and cc is the speed of light. The dimensions of α\alpha are

A

[M0L0T0I0][M^0 L^0 T^0 I^0]

B

[M1L1T2I2][M^1 L^{-1} T^2 I^{-2}]

C

[M2L1T1I0][M^2 L^1 T^{-1} I^0]

D

[M0L3T1I2][M^0 L^3 T^{-1} I^{-2}]

Answer

[M^0 L^0 T^0 I^0]

Explanation

Solution

To find the dimensions of the quantity α=e24πϵ0c\alpha = \frac{e^2}{4\pi\epsilon_0 c\hbar}, we need to determine the dimensions of each component in the expression. The constant 4π4\pi is dimensionless.

The dimensions of the components are:

  • Electric charge ee: [e]=[IT][e] = [I T], where II represents electric current and TT represents time.
  • Speed of light cc: [c]=[LT1][c] = [L T^{-1}], where LL represents length.
  • Reduced Planck's constant \hbar: Planck's constant hh has the dimensions of energy multiplied by time (action). The dimension of energy is [ML2T2][M L^2 T^{-2}] (from E=12mv2E = \frac{1}{2}mv^2). So, [h]=[ML2T2]×[T]=[ML2T1][h] = [M L^2 T^{-2}] \times [T] = [M L^2 T^{-1}]. Since =h2π\hbar = \frac{h}{2\pi} and 2π2\pi is dimensionless, []=[ML2T1][\hbar] = [M L^2 T^{-1}].
  • Permittivity of free space ϵ0\epsilon_0: We can find the dimensions of ϵ0\epsilon_0 from Coulomb's Law, F=14πϵ0q1q2r2F = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2}. Rearranging for ϵ0\epsilon_0, we get ϵ0=q1q24πFr2\epsilon_0 = \frac{q_1 q_2}{4\pi F r^2}. The dimension of force FF is [MLT2][M L T^{-2}]. The dimensions of charges q1q_1 and q2q_2 are [IT][I T]. The dimension of distance rr is [L][L]. So, [ϵ0]=[IT][IT][MLT2][L2]=[I2T2][ML3T2]=[M1L3T4I2][\epsilon_0] = \frac{[I T][I T]}{[M L T^{-2}][L^2]} = \frac{[I^2 T^2]}{[M L^3 T^{-2}]} = [M^{-1} L^{-3} T^4 I^2].

Now, substitute these dimensions into the expression for α\alpha: [α]=[e2][ϵ0][c][][\alpha] = \frac{[e^2]}{[\epsilon_0] [c] [\hbar]} [e2]=([IT])2=[I2T2][e^2] = ([I T])^2 = [I^2 T^2]

Denominator dimensions = [ϵ0][c][][\epsilon_0] [c] [\hbar] =[M1L3T4I2]×[LT1]×[ML2T1]= [M^{-1} L^{-3} T^4 I^2] \times [L T^{-1}] \times [M L^2 T^{-1}] Combine the powers of each fundamental dimension: MM: M1×M1=M1+1=M0M^{-1} \times M^1 = M^{-1+1} = M^0 LL: L3×L1×L2=L3+1+2=L0L^{-3} \times L^1 \times L^2 = L^{-3+1+2} = L^0 TT: T4×T1×T1=T411=T2T^4 \times T^{-1} \times T^{-1} = T^{4-1-1} = T^2 II: I2I^2 So, the dimensions of the denominator are [M0L0T2I2][M^0 L^0 T^2 I^2].

Now, calculate the dimensions of α\alpha: [α]=[I2T2][M0L0T2I2][\alpha] = \frac{[I^2 T^2]}{[M^0 L^0 T^2 I^2]} Combine the powers of each fundamental dimension: MM: M0/M0=M00=M0M^0 / M^0 = M^{0-0} = M^0 LL: L0/L0=L00=L0L^0 / L^0 = L^{0-0} = L^0 TT: T2/T2=T22=T0T^2 / T^2 = T^{2-2} = T^0 II: I2/I2=I22=I0I^2 / I^2 = I^{2-2} = I^0

Thus, the dimensions of α\alpha are [M0L0T0I0][M^0 L^0 T^0 I^0]. This quantity α\alpha is the fine-structure constant, which is a dimensionless fundamental constant.