Solveeit Logo

Question

Question: A force F = $\alpha + \beta x^2$ acts on an object in the x -direction. The work done by the force i...

A force F = α+βx2\alpha + \beta x^2 acts on an object in the x -direction. The work done by the force is 5 J when the object is displaced by 1 m. If the constant α\alpha = 1 N then β\beta will be

A

15 N/m²

B

12 N/m²

C

8 N/m²

D

10 N/m²

Answer

12 N/m²

Explanation

Solution

The work done by a variable force F(x)F(x) acting on an object in displacing it from x1x_1 to x2x_2 is given by the integral:

W=x1x2F(x)dxW = \int_{x_1}^{x_2} F(x) dx

Given:

  • Force F=α+βx2F = \alpha + \beta x^2
  • Work done W=5W = 5 J
  • Displacement is 1 m. Assuming the object starts from x1=0x_1 = 0 m, it moves to x2=1x_2 = 1 m.
  • Constant α=1\alpha = 1 N

Substitute the given force function and limits into the work integral:

W=01(α+βx2)dxW = \int_{0}^{1} (\alpha + \beta x^2) dx

Evaluate the definite integral:

W=[αx+βx33]01W = \left[ \alpha x + \beta \frac{x^3}{3} \right]_{0}^{1}

W=(α(1)+β(1)33)(α(0)+β(0)33)W = \left( \alpha (1) + \beta \frac{(1)^3}{3} \right) - \left( \alpha (0) + \beta \frac{(0)^3}{3} \right)

W=(α+β3)(0)W = \left( \alpha + \frac{\beta}{3} \right) - (0)

W=α+β3W = \alpha + \frac{\beta}{3}

Now, substitute the given values for WW and α\alpha:

5=1+β35 = 1 + \frac{\beta}{3}

Solve for β\beta:

51=β35 - 1 = \frac{\beta}{3}

4=β34 = \frac{\beta}{3}

β=4×3\beta = 4 \times 3

β=12\beta = 12 N/m²

The value of β\beta is 12 N/m².