Solveeit Logo

Question

Question: Find the exact value of sin 165° using expansion of sin (a + b)....

Find the exact value of sin 165° using expansion of sin (a + b).

A

sin(165°) = sin(120°)cos(45°) + cos(120°)sin(45°)

B

sin(165°) = sin(180°)cos(15°) - cos(180°)sin(15°)

C

sin(165°) = sin(120° + 45°) = sin(120°)cos(45°) + cos(120°)sin(45°)

D

sin(165°) = sin(135° + 30°) = sin(135°)cos(30°) + cos(135°)sin(30°)

Answer

sin(165°) = sin(120° + 45°) = sin(120°)cos(45°) + cos(120°)sin(45°)

Explanation

Solution

To find the exact value of sin 165°, we can use the sine addition formula: sin(a+b)=sinacosb+cosasinb\sin(a+b) = \sin a \cos b + \cos a \sin b. We express 165° as a sum of two standard angles, for example, 120+45120^\circ + 45^\circ.

Applying the formula: sin(165)=sin(120+45)=sin(120)cos(45)+cos(120)sin(45)\sin(165^\circ) = \sin(120^\circ + 45^\circ) = \sin(120^\circ)\cos(45^\circ) + \cos(120^\circ)\sin(45^\circ)

Now, we substitute the known values of these trigonometric functions: sin(120)=32\sin(120^\circ) = \frac{\sqrt{3}}{2} cos(120)=12\cos(120^\circ) = -\frac{1}{2} sin(45)=22\sin(45^\circ) = \frac{\sqrt{2}}{2} cos(45)=22\cos(45^\circ) = \frac{\sqrt{2}}{2}

Substituting these values into the equation: sin(165)=(32)(22)+(12)(22)\sin(165^\circ) = \left(\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{2}}{2}\right) + \left(-\frac{1}{2}\right)\left(\frac{\sqrt{2}}{2}\right) sin(165)=6424\sin(165^\circ) = \frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4} sin(165)=624\sin(165^\circ) = \frac{\sqrt{6} - \sqrt{2}}{4}

Therefore, the exact value of sin165\sin 165^\circ is 624\frac{\sqrt{6} - \sqrt{2}}{4}. The option that correctly represents the application of the sine addition formula for sin 165° is sin(165)=sin(120+45)=sin(120)cos(45)+cos(120)sin(45)\sin(165^\circ) = \sin(120^\circ + 45^\circ) = \sin(120^\circ)\cos(45^\circ) + \cos(120^\circ)\sin(45^\circ).