Question
Question: Find the exact value of sin 165° using expansion of sin (a + b)....
Find the exact value of sin 165° using expansion of sin (a + b).

sin(165°) = sin(120°)cos(45°) + cos(120°)sin(45°)
sin(165°) = sin(180°)cos(15°) - cos(180°)sin(15°)
sin(165°) = sin(120° + 45°) = sin(120°)cos(45°) + cos(120°)sin(45°)
sin(165°) = sin(135° + 30°) = sin(135°)cos(30°) + cos(135°)sin(30°)
sin(165°) = sin(120° + 45°) = sin(120°)cos(45°) + cos(120°)sin(45°)
Solution
To find the exact value of sin 165°, we can use the sine addition formula: sin(a+b)=sinacosb+cosasinb. We express 165° as a sum of two standard angles, for example, 120∘+45∘.
Applying the formula: sin(165∘)=sin(120∘+45∘)=sin(120∘)cos(45∘)+cos(120∘)sin(45∘)
Now, we substitute the known values of these trigonometric functions: sin(120∘)=23 cos(120∘)=−21 sin(45∘)=22 cos(45∘)=22
Substituting these values into the equation: sin(165∘)=(23)(22)+(−21)(22) sin(165∘)=46−42 sin(165∘)=46−2
Therefore, the exact value of sin165∘ is 46−2. The option that correctly represents the application of the sine addition formula for sin 165° is sin(165∘)=sin(120∘+45∘)=sin(120∘)cos(45∘)+cos(120∘)sin(45∘).