Solveeit Logo

Question

Question: If $\alpha$ and $\beta$ are the roots of the equation, $7x^2 - 3x - 2 = 0$, then the value of $\frac...

If α\alpha and β\beta are the roots of the equation, 7x23x2=07x^2 - 3x - 2 = 0, then the value of α1α2+β1β2\frac{\alpha}{1-\alpha^2} + \frac{\beta}{1-\beta^2} is equal to

A

3/8

B

1/24

C

27/16

D

27/32

Answer

27/16

Explanation

Solution

The problem asks for the value of a symmetric expression involving the roots of a quadratic equation.

Given the quadratic equation: 7x23x2=07x^2 - 3x - 2 = 0. Let α\alpha and β\beta be the roots of this equation. From Vieta's formulas, we have:

Sum of roots: α+β=(coefficient of x)/(coefficient of x2)=(3)/7=3/7\alpha + \beta = -(\text{coefficient of } x) / (\text{coefficient of } x^2) = -(-3)/7 = 3/7

Product of roots: αβ=(constant term)/(coefficient of x2)=2/7\alpha\beta = (\text{constant term}) / (\text{coefficient of } x^2) = -2/7

We need to find the value of the expression E=α1α2+β1β2E = \frac{\alpha}{1-\alpha^2} + \frac{\beta}{1-\beta^2}.

Method 1: Direct Simplification

Combine the terms by finding a common denominator: E=α(1β2)+β(1α2)(1α2)(1β2)E = \frac{\alpha(1-\beta^2) + \beta(1-\alpha^2)}{(1-\alpha^2)(1-\beta^2)}

Expand the numerator: Numerator =ααβ2+ββα2=(α+β)αβ(β+α)= \alpha - \alpha\beta^2 + \beta - \beta\alpha^2 = (\alpha+\beta) - \alpha\beta(\beta+\alpha)

Factor out (α+β)(\alpha+\beta): Numerator =(α+β)(1αβ)= (\alpha+\beta)(1 - \alpha\beta)

Expand the denominator: Denominator =1β2α2+α2β2=1(α2+β2)+(αβ)2= 1 - \beta^2 - \alpha^2 + \alpha^2\beta^2 = 1 - (\alpha^2+\beta^2) + (\alpha\beta)^2

To find α2+β2\alpha^2+\beta^2, use the identity (α+β)2=α2+β2+2αβ(\alpha+\beta)^2 = \alpha^2 + \beta^2 + 2\alpha\beta: α2+β2=(α+β)22αβ\alpha^2+\beta^2 = (\alpha+\beta)^2 - 2\alpha\beta

Substitute the values of α+β\alpha+\beta and αβ\alpha\beta: α2+β2=(3/7)22(2/7)\alpha^2+\beta^2 = (3/7)^2 - 2(-2/7) α2+β2=9/49+4/7\alpha^2+\beta^2 = 9/49 + 4/7

To add these fractions, find a common denominator (49): α2+β2=9/49+(4×7)/(7×7)=9/49+28/49=37/49\alpha^2+\beta^2 = 9/49 + (4 \times 7)/(7 \times 7) = 9/49 + 28/49 = 37/49

Now substitute these values back into the numerator and denominator expressions: Numerator =(α+β)(1αβ)=(3/7)(1(2/7))=(3/7)(1+2/7)=(3/7)(7/7+2/7)=(3/7)(9/7)=27/49= (\alpha+\beta)(1 - \alpha\beta) = (3/7)(1 - (-2/7)) = (3/7)(1 + 2/7) = (3/7)(7/7 + 2/7) = (3/7)(9/7) = 27/49

Denominator =1(α2+β2)+(αβ)2=1(37/49)+(2/7)2=137/49+4/49=49/4937/49+4/49=(4937+4)/49=(12+4)/49=16/49= 1 - (\alpha^2+\beta^2) + (\alpha\beta)^2 = 1 - (37/49) + (-2/7)^2 = 1 - 37/49 + 4/49 = 49/49 - 37/49 + 4/49 = (49 - 37 + 4)/49 = (12 + 4)/49 = 16/49

Finally, divide the numerator by the denominator: E=27/4916/49=2716E = \frac{27/49}{16/49} = \frac{27}{16}

Method 2: Using the given equation

Since α\alpha is a root of 7x23x2=07x^2 - 3x - 2 = 0, it satisfies the equation: 7α23α2=07\alpha^2 - 3\alpha - 2 = 0

We can express α2\alpha^2 in terms of α\alpha: 7α2=3α+27\alpha^2 = 3\alpha + 2 α2=3α+27\alpha^2 = \frac{3\alpha + 2}{7}

Now, substitute this into the term 1α21-\alpha^2: 1α2=13α+27=7(3α+2)7=73α27=53α71-\alpha^2 = 1 - \frac{3\alpha + 2}{7} = \frac{7 - (3\alpha + 2)}{7} = \frac{7 - 3\alpha - 2}{7} = \frac{5 - 3\alpha}{7}

So, the term α1α2\frac{\alpha}{1-\alpha^2} becomes: α(53α)/7=7α53α\frac{\alpha}{(5-3\alpha)/7} = \frac{7\alpha}{5-3\alpha} Similarly, β1β2=7β53β\frac{\beta}{1-\beta^2} = \frac{7\beta}{5-3\beta}.

Now, the expression EE is: E=7α53α+7β53βE = \frac{7\alpha}{5-3\alpha} + \frac{7\beta}{5-3\beta} Factor out 7: E=7(α53α+β53β)E = 7 \left( \frac{\alpha}{5-3\alpha} + \frac{\beta}{5-3\beta} \right)

Combine the terms inside the parenthesis: E=7(α(53β)+β(53α)(53α)(53β))E = 7 \left( \frac{\alpha(5-3\beta) + \beta(5-3\alpha)}{(5-3\alpha)(5-3\beta)} \right)

Numerator inside parenthesis: 5α3αβ+5β3αβ=5(α+β)6αβ5\alpha - 3\alpha\beta + 5\beta - 3\alpha\beta = 5(\alpha+\beta) - 6\alpha\beta

Substitute α+β=3/7\alpha+\beta = 3/7 and αβ=2/7\alpha\beta = -2/7: 5(3/7)6(2/7)=15/7+12/7=27/75(3/7) - 6(-2/7) = 15/7 + 12/7 = 27/7

Denominator inside parenthesis: (53α)(53β)=2515β15α+9αβ=2515(α+β)+9αβ(5-3\alpha)(5-3\beta) = 25 - 15\beta - 15\alpha + 9\alpha\beta = 25 - 15(\alpha+\beta) + 9\alpha\beta

Substitute α+β=3/7\alpha+\beta = 3/7 and αβ=2/7\alpha\beta = -2/7: =2515(3/7)+9(2/7)=2545/718/7=25(45+18)/7=2563/7=259=16= 25 - 15(3/7) + 9(-2/7) = 25 - 45/7 - 18/7 = 25 - (45+18)/7 = 25 - 63/7 = 25 - 9 = 16

Substitute these back into the expression for E: E=7(27/716)=7×277×16=2716E = 7 \left( \frac{27/7}{16} \right) = 7 \times \frac{27}{7 \times 16} = \frac{27}{16}

Both methods yield the same result.