Question
Question: If $\alpha$ and $\beta$ are the roots of the equation, $7x^2 - 3x - 2 = 0$, then the value of $\frac...
If α and β are the roots of the equation, 7x2−3x−2=0, then the value of 1−α2α+1−β2β is equal to

3/8
1/24
27/16
27/32
27/16
Solution
The problem asks for the value of a symmetric expression involving the roots of a quadratic equation.
Given the quadratic equation: 7x2−3x−2=0. Let α and β be the roots of this equation. From Vieta's formulas, we have:
Sum of roots: α+β=−(coefficient of x)/(coefficient of x2)=−(−3)/7=3/7
Product of roots: αβ=(constant term)/(coefficient of x2)=−2/7
We need to find the value of the expression E=1−α2α+1−β2β.
Method 1: Direct Simplification
Combine the terms by finding a common denominator: E=(1−α2)(1−β2)α(1−β2)+β(1−α2)
Expand the numerator: Numerator =α−αβ2+β−βα2=(α+β)−αβ(β+α)
Factor out (α+β): Numerator =(α+β)(1−αβ)
Expand the denominator: Denominator =1−β2−α2+α2β2=1−(α2+β2)+(αβ)2
To find α2+β2, use the identity (α+β)2=α2+β2+2αβ: α2+β2=(α+β)2−2αβ
Substitute the values of α+β and αβ: α2+β2=(3/7)2−2(−2/7) α2+β2=9/49+4/7
To add these fractions, find a common denominator (49): α2+β2=9/49+(4×7)/(7×7)=9/49+28/49=37/49
Now substitute these values back into the numerator and denominator expressions: Numerator =(α+β)(1−αβ)=(3/7)(1−(−2/7))=(3/7)(1+2/7)=(3/7)(7/7+2/7)=(3/7)(9/7)=27/49
Denominator =1−(α2+β2)+(αβ)2=1−(37/49)+(−2/7)2=1−37/49+4/49=49/49−37/49+4/49=(49−37+4)/49=(12+4)/49=16/49
Finally, divide the numerator by the denominator: E=16/4927/49=1627
Method 2: Using the given equation
Since α is a root of 7x2−3x−2=0, it satisfies the equation: 7α2−3α−2=0
We can express α2 in terms of α: 7α2=3α+2 α2=73α+2
Now, substitute this into the term 1−α2: 1−α2=1−73α+2=77−(3α+2)=77−3α−2=75−3α
So, the term 1−α2α becomes: (5−3α)/7α=5−3α7α Similarly, 1−β2β=5−3β7β.
Now, the expression E is: E=5−3α7α+5−3β7β Factor out 7: E=7(5−3αα+5−3ββ)
Combine the terms inside the parenthesis: E=7((5−3α)(5−3β)α(5−3β)+β(5−3α))
Numerator inside parenthesis: 5α−3αβ+5β−3αβ=5(α+β)−6αβ
Substitute α+β=3/7 and αβ=−2/7: 5(3/7)−6(−2/7)=15/7+12/7=27/7
Denominator inside parenthesis: (5−3α)(5−3β)=25−15β−15α+9αβ=25−15(α+β)+9αβ
Substitute α+β=3/7 and αβ=−2/7: =25−15(3/7)+9(−2/7)=25−45/7−18/7=25−(45+18)/7=25−63/7=25−9=16
Substitute these back into the expression for E: E=7(1627/7)=7×7×1627=1627
Both methods yield the same result.