Solveeit Logo

Question

Question: The determinant $\begin{vmatrix} 1+a+x & a+y & a+z \\ b+x & 1+b+y & b+z \\ c+x & c+y & 1+c+z \end{vm...

The determinant 1+a+xa+ya+zb+x1+b+yb+zc+xc+y1+c+z=\begin{vmatrix} 1+a+x & a+y & a+z \\ b+x & 1+b+y & b+z \\ c+x & c+y & 1+c+z \end{vmatrix} =

A

(1+a+b+c)(1+x+y+z)3(ax+by+cz)(1+a+b+c)(1+x+y+z)-3(ax+by+cz)

B

a(x+y)+b(y+z)+c(z+x)(xy+yz+zx)a(x+y)+b(y+z)+c(z+x)-(xy+yz+zx)

C

x(a+b)+y(b+c)+z(c+a)(ab+bc+ca)x(a+b)+y(b+c)+z(c+a)-(ab+bc+ca)

D

none of these

Answer

(1+a+b+c)(1+x+y+z)3(ax+by+cz)(1+a+b+c)(1+x+y+z)-3(ax+by+cz)

Explanation

Solution

Express the given matrix as I+uvT+uvTI+u v^T+u'v'^T. Use the determinant formula for rank–two updates:

det(M)=det(I2+(vTuvTuvTuvTu))\det(M)=\det\Big(I_2+\begin{pmatrix} v^T u & v^T u'\\ v'^T u & v'^T u'\end{pmatrix}\Big)

to obtain:

(1+a+b+c)(1+x+y+z)3(ax+by+cz).(1+a+b+c)(1+x+y+z)-3(ax+by+cz).