Question
Question: The determinant $\begin{vmatrix} 1+a+x & a+y & a+z \\ b+x & 1+b+y & b+z \\ c+x & c+y & 1+c+z \end{vm...
The determinant 1+a+xb+xc+xa+y1+b+yc+ya+zb+z1+c+z=

A
(1+a+b+c)(1+x+y+z)−3(ax+by+cz)
B
a(x+y)+b(y+z)+c(z+x)−(xy+yz+zx)
C
x(a+b)+y(b+c)+z(c+a)−(ab+bc+ca)
D
none of these
Answer
(1+a+b+c)(1+x+y+z)−3(ax+by+cz)
Explanation
Solution
Express the given matrix as I+uvT+u′v′T. Use the determinant formula for rank–two updates:
det(M)=det(I2+(vTuv′TuvTu′v′Tu′))to obtain:
(1+a+b+c)(1+x+y+z)−3(ax+by+cz).