Solveeit Logo

Question

Question: The number of solution(s) of the equation $z^2 = 4z + |z|$ $|2 + \frac{16}{|z|^3}|$ is (where z=x+...

The number of solution(s) of the equation z2=4z+zz^2 = 4z + |z|

2+16z3|2 + \frac{16}{|z|^3}| is

(where z=x+iy, x,y \in R, i2=1i^2 = -1 and x \neq 2)

A

0

B

1

C

2

D

3

Answer

2

Explanation

Solution

We are to solve for complex numbers z=reiθz = re^{i\theta} (with r=z>0r = |z| > 0) satisfying

z2=4z+z2+16z3.z^2 = 4z + |z|\,\Bigl|2+\frac{16}{|z|^3}\Bigr|.

Since

2+16z3=2+16r3(because r>0),\Bigl|2+\frac{16}{|z|^3}\Bigr| = 2+\frac{16}{r^3}\quad \text{(because } r>0 \text{)},

the equation becomes

z2=4z+r(2+16r3).z^2 = 4z + r\left(2+\frac{16}{r^3}\right).

Writing z=reiθz = re^{i\theta}, note that

z2=r2e2iθand4z=4reiθ.z^2 = r^2 e^{2i\theta} \quad \text{and} \quad 4z = 4re^{i\theta}.

Thus, dividing the entire equation by rr (since r0r\neq 0) we obtain

re2iθ=4eiθ+(2+16r3).r e^{2i\theta} = 4e^{i\theta} + \left(2+\frac{16}{r^3}\right).

Write this in rectangular form:

r(cos2θ+isin2θ)=4(cosθ+isinθ)+(2+16r3).r(\cos 2\theta + i\sin 2\theta) = 4(\cos\theta + i\sin\theta) + \left(2+\frac{16}{r^3}\right).

Equate the imaginary parts:

rsin2θ=4sinθ.r\sin 2\theta = 4\sin\theta.

Since

sin2θ=2sinθcosθ,\sin 2\theta = 2\sin\theta\cos\theta,

for sinθ0\sin\theta\neq 0 we have

2rsinθcosθ=4sinθrcosθ=2.2r\sin\theta\cos\theta = 4\sin\theta \quad\Longrightarrow\quad r\cos\theta =2.

But then the real parts become (with cos2θ=2cos2θ1\cos2\theta= 2\cos^2\theta-1):

r(2cos2θ1)=4cosθ+(2+16r3).r(2\cos^2\theta-1) = 4\cos\theta + \left(2+\frac{16}{r^3}\right).

Substituting cosθ=2r\cos\theta=\frac{2}{r} (from rcosθ=2r\cos\theta=2) we get:

r(24r21)=8r+2+16r3.r\left(2\frac{4}{r^2}-1\right)=\frac{8}{r}+2+\frac{16}{r^3}.

Simplifying gives

8rr=8r+2+16r3,\frac{8}{r}-r = \frac{8}{r}+2+\frac{16}{r^3},

or

r=2+16r3.-r = 2+\frac{16}{r^3}.

Multiplying by r3>0r^3>0 yields

r42r316=0r4+2r3+16=0,-r^4 -2r^3 -16 = 0 \quad\Longrightarrow\quad r^4+2r^3+16 = 0,

which for r>0r>0 has no solution. Hence, the only possibility is when

sinθ=0.\sin\theta=0.

Thus, let θ=0\theta=0 or θ=π\theta=\pi.

Case 1: θ=0\theta = 0
Then z=rz = r (a positive real number). The equation becomes:

re0=4+(2+16r3)r=6+16r3.r e^{0} = 4 + \left(2+\frac{16}{r^3}\right) \quad\Longrightarrow\quad r = 6+\frac{16}{r^3}.

Multiplying by r3r^3 gives

r46r316=0.r^4 - 6r^3 - 16 = 0.

For r>0r>0 this equation has exactly one positive real root (found via the Intermediate Value Theorem), and x2x\neq2 is automatically satisfied since r>6r > 6 approximately.

Case 2: θ=π\theta = \pi
Then z=rz = -r (with r>0r>0). With e2iπ=1e^{2i\pi} = 1 the equation becomes:

r=4(1)+(2+16r3)r=4+2+16r3,r = 4(-1) + \left(2+\frac{16}{r^3}\right) \quad\Longrightarrow\quad r = -4+2+\frac{16}{r^3},

or

r=2+16r3.r = -2 + \frac{16}{r^3}.

Rearrange:

r+2=16r3r4+2r316=0.r+2 = \frac{16}{r^3} \quad\Longrightarrow\quad r^4+2r^3-16 = 0.

Again, for r>0r>0 this has exactly one positive real root (which can be shown through sign change analysis).

Thus, we obtain one valid solution for each of the angles θ=0\theta=0 and θ=π\theta=\pi.

Conclusion: There are 2 solutions.