Solveeit Logo

Question

Question: The determinant $\begin{vmatrix} x & a & a \\ a & x & a \\ a & a & x \end{vmatrix} =$...

The determinant xaaaxaaax=\begin{vmatrix} x & a & a \\ a & x & a \\ a & a & x \end{vmatrix} =

A

(x+2a)(xa)2(x+2a)(x-a)^2

B

(x+a)(x2a)(x+a)(x-2a)

C

(xa)(x+2a)2(x-a)(x+2a)^2

D

(x2a)(x+a)(x-2a)(x+a)

Answer

(x+2a)(xa)2(x+2a)(x-a)^2

Explanation

Solution

For the matrix

xaaaxaaax,\begin{vmatrix} x & a & a \\ a & x & a \\ a & a & x \end{vmatrix},

a well-known formula for the determinant of a matrix with constant off-diagonal entries (and identical diagonal entries) is:

det=(xa)2(x+2a).\det = (x-a)^2 (x+2a).

Thus, the correct option is (1) (x+2a)(xa)2(x+2a)(x-a)^2.