Solveeit Logo

Question

Question: Let the function, $$ f(x) = \begin{cases} -3ax^2-2, & x < 1 \\ a^2 + bx, & x \geq 1 \end{cases} $$ b...

Let the function,

f(x)={3ax22,x<1a2+bx,x1f(x) = \begin{cases} -3ax^2-2, & x < 1 \\ a^2 + bx, & x \geq 1 \end{cases}

be differentiable for all xRx \in \mathbb{R}, where a>1,bRa > 1, b \in \mathbb{R}. If the area of the region enclosed by y=f(x)y = f(x) and the line y=20y = -20 is α+β3,α,βZ\alpha + \beta\sqrt{3}, \alpha, \beta \in \mathbb{Z}, then the value of α+β\alpha + \beta is

Answer

34

Explanation

Solution

The problem involves finding the area enclosed by a piecewise differentiable function and a horizontal line.

Step 1: Determine the values of 'a' and 'b' using differentiability conditions. The function is given as:

f(x)={3ax22,x<1a2+bx,x1f(x) = \begin{cases} -3ax^2-2, & x < 1 \\ a^2 + bx, & x \geq 1 \end{cases}

For f(x)f(x) to be differentiable for all xRx \in \mathbb{R}, it must be continuous at x=1x=1 and its left-hand derivative must equal its right-hand derivative at x=1x=1.

Condition 1: Continuity at x=1x=1 limx1f(x)=limx1+f(x)=f(1)\lim_{x \to 1^-} f(x) = \lim_{x \to 1^+} f(x) = f(1) 3a(1)22=a2+b(1)-3a(1)^2-2 = a^2+b(1) 3a2=a2+b-3a-2 = a^2+b a2+b+3a+2=0(Equation 1)a^2+b+3a+2 = 0 \quad (\text{Equation 1})

Condition 2: Differentiability at x=1x=1 First, find the derivatives of the two parts: For x<1x < 1, f(x)=ddx(3ax22)=6axf'(x) = \frac{d}{dx}(-3ax^2-2) = -6ax. For x>1x > 1, f(x)=ddx(a2+bx)=bf'(x) = \frac{d}{dx}(a^2+bx) = b. For differentiability at x=1x=1, f(1)=f(1+)f'(1^-) = f'(1^+): 6a(1)=b-6a(1) = b 6a=b(Equation 2)-6a = b \quad (\text{Equation 2})

Now, substitute Equation 2 into Equation 1: a2+(6a)+3a+2=0a^2 + (-6a) + 3a + 2 = 0 a23a+2=0a^2 - 3a + 2 = 0 This is a quadratic equation that can be factored: (a1)(a2)=0(a-1)(a-2) = 0 So, a=1a=1 or a=2a=2.

The problem states that a>1a > 1, so we choose a=2a=2. Substitute a=2a=2 into Equation 2 to find bb: b=6(2)=12b = -6(2) = -12.

Thus, the function f(x)f(x) is:

f(x)={3(2)x22,x<1(2)2+(12)x,x1f(x) = \begin{cases} -3(2)x^2-2, & x < 1 \\ (2)^2 + (-12)x, & x \geq 1 \end{cases} f(x)={6x22,x<1412x,x1f(x) = \begin{cases} -6x^2-2, & x < 1 \\ 4 - 12x, & x \geq 1 \end{cases}

Step 2: Find the intersection points of y=f(x)y = f(x) and y=20y = -20. Case 1: For x<1x < 1 6x22=20-6x^2-2 = -20 6x2=18-6x^2 = -18 x2=3x^2 = 3 x=±3x = \pm\sqrt{3} Since we are considering x<1x < 1, only x=3x = -\sqrt{3} is a valid intersection point.

Case 2: For x1x \geq 1 412x=204-12x = -20 12x=24-12x = -24 x=2x = 2 Since we are considering x1x \geq 1, x=2x=2 is a valid intersection point.

The region enclosed by y=f(x)y=f(x) and y=20y=-20 is between x=3x=-\sqrt{3} and x=2x=2.

Step 3: Set up the integral for the area. We need to determine if f(x)f(x) is above or below y=20y=-20 in the interval [3,2][-\sqrt{3}, 2]. For x[3,1)x \in [-\sqrt{3}, 1), f(x)=6x22f(x) = -6x^2-2. The maximum value in this interval is at x=0x=0, f(0)=2f(0)=-2. The minimum value is at x=3x=-\sqrt{3}, f(3)=20f(-\sqrt{3})=-20. Since f(x)f(x) is a downward parabola with vertex at (0,2)(0,-2), f(x)20f(x) \ge -20 for x[3,1)x \in [-\sqrt{3}, 1). For x[1,2]x \in [1, 2], f(x)=412xf(x) = 4-12x. This is a decreasing line. At x=1x=1, f(1)=8f(1)=-8. At x=2x=2, f(2)=20f(2)=-20. So, f(x)20f(x) \ge -20 for x[1,2]x \in [1, 2]. Since f(x)20f(x) \ge -20 over the entire interval [3,2][-\sqrt{3}, 2], the area AA is given by: A=32(f(x)(20))dxA = \int_{-\sqrt{3}}^{2} (f(x) - (-20)) dx We split the integral at x=1x=1 due to the piecewise definition: A=31(6x22(20))dx+12(412x(20))dxA = \int_{-\sqrt{3}}^{1} (-6x^2-2 - (-20)) dx + \int_{1}^{2} (4-12x - (-20)) dx A=31(6x2+18)dx+12(2412x)dxA = \int_{-\sqrt{3}}^{1} (-6x^2+18) dx + \int_{1}^{2} (24-12x) dx

Step 4: Evaluate the integrals. First integral:

31(6x2+18)dx=[6x33+18x]31=[2x3+18x]31=(2(1)3+18(1))(2(3)3+18(3))=(2+18)(2(33)183)=16(63183)=16(123)=16+123\int_{-\sqrt{3}}^{1} (-6x^2+18) dx = \left[-6\frac{x^3}{3} + 18x\right]_{-\sqrt{3}}^{1} = \left[-2x^3 + 18x\right]_{-\sqrt{3}}^{1} \\ = (-2(1)^3 + 18(1)) - (-2(-\sqrt{3})^3 + 18(-\sqrt{3})) \\ = (-2+18) - (-2(-3\sqrt{3}) - 18\sqrt{3}) \\ = 16 - (6\sqrt{3} - 18\sqrt{3}) \\ = 16 - (-12\sqrt{3}) = 16 + 12\sqrt{3}

Second integral:

12(2412x)dx=[24x12x22]12=[24x6x2]12=(24(2)6(2)2)(24(1)6(1)2)=(486(4))(246)=(4824)(18)=2418=6\int_{1}^{2} (24-12x) dx = \left[24x - 12\frac{x^2}{2}\right]_{1}^{2} = \left[24x - 6x^2\right]_{1}^{2} \\ = (24(2) - 6(2)^2) - (24(1) - 6(1)^2) \\ = (48 - 6(4)) - (24 - 6) \\ = (48 - 24) - (18) \\ = 24 - 18 = 6

Step 5: Calculate the total area and find α+β\alpha + \beta. Total Area A=(16+123)+6=22+123A = (16 + 12\sqrt{3}) + 6 = 22 + 12\sqrt{3}. The problem states the area is α+β3\alpha + \beta\sqrt{3}, where α,βZ\alpha, \beta \in \mathbb{Z}. Comparing 22+12322 + 12\sqrt{3} with α+β3\alpha + \beta\sqrt{3}: α=22\alpha = 22 β=12\beta = 12 The value of α+β=22+12=34\alpha + \beta = 22 + 12 = 34.