Question
Question: Let $A = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{-1}{2} & \frac{\sqrt{3}}{2} \end{...
Let A=[232−12123], B=[1011] and C=ABAT, then ATC3A is equal to

[231210]
[12301]
[10233]
[1031]
[1031]
Solution
Let the given matrices be A=[232−12123] and B=[1011]. We are given C=ABAT. We need to find ATC3A.
First, find the transpose of A, AT:
AT=[23212−123].
Calculate AAT:
AAT=[232−12123][23212−123]=[(23)2+(21)2(2−1)(23)+(23)(21)23(2−1)+21(23)(2−1)2+(23)2]=[43+414−3+434−3+4341+43]=[1001]=I.
Similarly, ATA=I. This shows that A is an orthogonal matrix, and AT=A−1.
Now consider the expression ATC3A. Substitute C=ABAT:
ATC3A=AT(ABAT)3A.
Using the property of matrix multiplication, (PQR)n=PQnR if Q commutes with P and R, or if P and R are inverses and Q is in the middle. In this case, we can expand the power:
ATC3A=AT(ABAT)(ABAT)(ABAT)A.
Using the associative property of matrix multiplication and the fact that ATA=I:
AT(ABAT)(ABAT)(ABAT)A=ATABATABATABATA=(ATA)B(ATA)B(ATA)B(ATA)=IBIBIBI=BBB=B3.
So, the problem reduces to calculating B3.
B=[1011].
Calculate the powers of B:
B2=B⋅B=[1011][1011]=[1⋅1+1⋅00⋅1+1⋅01⋅1+1⋅10⋅1+1⋅1]=[1021].
B3=B2⋅B=[1021][1011]=[1⋅1+2⋅00⋅1+1⋅01⋅1+2⋅10⋅1+1⋅1]=[101+21]=[1031].
Alternatively, for a matrix of the form [10k1], the n-th power is given by [10nk1].
For B=[1011], k=1. So Bn=[10n1].
For n=3, B3=[1031].
Thus, ATC3A=B3=[1031].