Solveeit Logo

Question

Question: Let $A = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{-1}{2} & \frac{\sqrt{3}}{2} \end{...

Let A=[32121232]A = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{-1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}, B=[1101]B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} and C=ABATC = ABA^T, then ATC3AA^T C^3 A is equal to

A

[321210]\begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ 1 & 0 \end{bmatrix}

B

[10321]\begin{bmatrix} 1 & 0 \\ \frac{\sqrt{3}}{2} & 1 \end{bmatrix}

C

[13203]\begin{bmatrix} 1 & \frac{\sqrt{3}}{2} \\ 0 & 3 \end{bmatrix}

D

[1301]\begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}

Answer

[1301]\begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}

Explanation

Solution

Let the given matrices be A=[32121232]A = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{-1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} and B=[1101]B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}. We are given C=ABATC = ABA^T. We need to find ATC3AA^T C^3 A.

First, find the transpose of AA, ATA^T:

AT=[32121232]A^T = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{-1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}.

Calculate AATA A^T:

AAT=[32121232][32121232]=[(32)2+(12)232(12)+12(32)(12)(32)+(32)(12)(12)2+(32)2]=[34+1434+3434+3414+34]=[1001]=IA A^T = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{-1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{-1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} = \begin{bmatrix} (\frac{\sqrt{3}}{2})^2 + (\frac{1}{2})^2 & \frac{\sqrt{3}}{2}(\frac{-1}{2}) + \frac{1}{2}(\frac{\sqrt{3}}{2}) \\ (\frac{-1}{2})(\frac{\sqrt{3}}{2}) + (\frac{\sqrt{3}}{2})(\frac{1}{2}) & (\frac{-1}{2})^2 + (\frac{\sqrt{3}}{2})^2 \end{bmatrix} = \begin{bmatrix} \frac{3}{4} + \frac{1}{4} & \frac{-\sqrt{3}}{4} + \frac{\sqrt{3}}{4} \\ \frac{-\sqrt{3}}{4} + \frac{\sqrt{3}}{4} & \frac{1}{4} + \frac{3}{4} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I.

Similarly, ATA=IA^T A = I. This shows that AA is an orthogonal matrix, and AT=A1A^T = A^{-1}.

Now consider the expression ATC3AA^T C^3 A. Substitute C=ABATC = ABA^T:

ATC3A=AT(ABAT)3AA^T C^3 A = A^T (ABA^T)^3 A.

Using the property of matrix multiplication, (PQR)n=PQnR(PQR)^n = P Q^n R if QQ commutes with PP and RR, or if PP and RR are inverses and QQ is in the middle. In this case, we can expand the power:

ATC3A=AT(ABAT)(ABAT)(ABAT)AA^T C^3 A = A^T (ABA^T)(ABA^T)(ABA^T) A.

Using the associative property of matrix multiplication and the fact that ATA=IA^T A = I:

AT(ABAT)(ABAT)(ABAT)A=ATABATABATABATA=(ATA)B(ATA)B(ATA)B(ATA)=IBIBIBI=BBB=B3A^T (ABA^T)(ABA^T)(ABA^T) A = A^T A B A^T A B A^T A B A^T A = (A^T A) B (A^T A) B (A^T A) B (A^T A) = I B I B I B I = B B B = B^3.

So, the problem reduces to calculating B3B^3.

B=[1101]B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}.

Calculate the powers of BB:

B2=BB=[1101][1101]=[11+1011+1101+1001+11]=[1201]B^2 = B \cdot B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 \cdot 1 + 1 \cdot 0 & 1 \cdot 1 + 1 \cdot 1 \\ 0 \cdot 1 + 1 \cdot 0 & 0 \cdot 1 + 1 \cdot 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}.

B3=B2B=[1201][1101]=[11+2011+2101+1001+11]=[11+201]=[1301]B^3 = B^2 \cdot B = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 \cdot 1 + 2 \cdot 0 & 1 \cdot 1 + 2 \cdot 1 \\ 0 \cdot 1 + 1 \cdot 0 & 0 \cdot 1 + 1 \cdot 1 \end{bmatrix} = \begin{bmatrix} 1 & 1+2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}.

Alternatively, for a matrix of the form [1k01]\begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}, the nn-th power is given by [1nk01]\begin{bmatrix} 1 & nk \\ 0 & 1 \end{bmatrix}.

For B=[1101]B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, k=1k=1. So Bn=[1n01]B^n = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}.

For n=3n=3, B3=[1301]B^3 = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}.

Thus, ATC3A=B3=[1301]A^T C^3 A = B^3 = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}.