Solveeit Logo

Question

Question: If $\sum_{r=0}^{5}\frac{^{11}C_{2r}}{2r+2} = \frac{m}{n}$, gcd(m, n) = 1, then m – n is equal to ___...

If r=0511C2r2r+2=mn\sum_{r=0}^{5}\frac{^{11}C_{2r}}{2r+2} = \frac{m}{n}, gcd(m, n) = 1, then m – n is equal to ___.

Answer

1721

Explanation

Solution

The given sum is r=0511C2r2r+2\sum_{r=0}^{5}\frac{^{11}C_{2r}}{2r+2}. We expand the sum by substituting values of r from 0 to 5:

  1. For r=0r=0: 11C02=12\frac{^{11}C_0}{2} = \frac{1}{2}
  2. For r=1r=1: 11C24=554\frac{^{11}C_2}{4} = \frac{55}{4}
  3. For r=2r=2: 11C46=3306=55\frac{^{11}C_4}{6} = \frac{330}{6} = 55
  4. For r=3r=3: 11C68=4628=2314\frac{^{11}C_6}{8} = \frac{462}{8} = \frac{231}{4}
  5. For r=4r=4: 11C810=16510=332\frac{^{11}C_8}{10} = \frac{165}{10} = \frac{33}{2}
  6. For r=5r=5: 11C1012=1112\frac{^{11}C_{10}}{12} = \frac{11}{12}

Summing these terms: S=12+554+55+2314+332+1112S = \frac{1}{2} + \frac{55}{4} + 55 + \frac{231}{4} + \frac{33}{2} + \frac{11}{12}

To combine these fractions, we find a common denominator, which is 12: S=612+16512+66012+69312+19812+1112S = \frac{6}{12} + \frac{165}{12} + \frac{660}{12} + \frac{693}{12} + \frac{198}{12} + \frac{11}{12} S=6+165+660+693+198+1112=173312S = \frac{6 + 165 + 660 + 693 + 198 + 11}{12} = \frac{1733}{12}

Given that S=mnS = \frac{m}{n} and gcd(m, n) = 1, we have m=1733m=1733 and n=12n=12. Since 1733 is not divisible by 2 or 3, and 12 is 22×32^2 \times 3, gcd(1733, 12) = 1. Finally, we calculate mnm-n: mn=173312=1721m-n = 1733 - 12 = 1721.