Solveeit Logo

Question

Question: A circle of constant radius 'a' passes through origin 'O' and cuts the axes of co-ordinates in point...

A circle of constant radius 'a' passes through origin 'O' and cuts the axes of co-ordinates in points P and Q, then the equation of the locus of the foot of perpendicular from O to PQ is:

A

(x2+y2)2(1x2+1y2)=4a2(x^2+y^2)^2(\frac{1}{x^2}+\frac{1}{y^2})=4a^2

B

(x2+y2)2(1x2+1y2)=a2(x^2+y^2)^2(\frac{1}{x^2}+\frac{1}{y^2})=a^2

C

(x2+y2)2(1x2+1y2)=4a2(x^2+y^2)^2(\frac{1}{x^2}+\frac{1}{y^2})=4a^2

D

(x2+y2)2(1x2+1y2)=a2(x^2+y^2)^2(\frac{1}{x^2}+\frac{1}{y^2})=a^2

Answer

(x2+y2)2(1x2+1y2)=4a2(x^2+y^2)^2(\frac{1}{x^2}+\frac{1}{y^2})=4a^2

Explanation

Solution

Let the equation of the circle be x2+y2+2gx+2fy=0x^2 + y^2 + 2gx + 2fy = 0 as it passes through the origin. The circle cuts the x-axis at P. Setting y=0y=0, we get x2+2gx=0x^2 + 2gx = 0, so x(x+2g)=0x(x+2g)=0. Thus, P=(2g,0)P = (-2g, 0). The circle cuts the y-axis at Q. Setting x=0x=0, we get y2+2fy=0y^2 + 2fy = 0, so y(y+2f)=0y(y+2f)=0. Thus, Q=(0,2f)Q = (0, -2f). The radius of the circle is given as 'a'. The radius of x2+y2+2gx+2fy+c=0x^2 + y^2 + 2gx + 2fy + c = 0 is g2+f2c\sqrt{g^2+f^2-c}. Here c=0c=0, so a=g2+f2a = \sqrt{g^2+f^2}, which means g2+f2=a2g^2+f^2 = a^2. The line PQ passes through P(2g,0)P(-2g, 0) and Q(0,2f)Q(0, -2f). The equation of line PQ is x2g+y2f=1\frac{x}{-2g} + \frac{y}{-2f} = 1, which simplifies to fx+gy+2fg=0fx + gy + 2fg = 0. Let R(h, k) be the foot of the perpendicular from the origin O(0,0) to PQ. The slope of PQ is mPQ=2f00(2g)=fgm_{PQ} = \frac{-2f - 0}{0 - (-2g)} = -\frac{f}{g}. The slope of OR is mOR=khm_{OR} = \frac{k}{h}. Since OR is perpendicular to PQ, mORmPQ=1m_{OR} \cdot m_{PQ} = -1, so kh(fg)=1\frac{k}{h} \cdot (-\frac{f}{g}) = -1, which gives kf=hgkf = hg. The point R(h, k) also lies on the line PQ, so fh+gk+2fg=0fh + gk + 2fg = 0. From kf=hgkf = hg, we have g=kfhg = \frac{kf}{h}. Substituting this into fh+gk+2fg=0fh + gk + 2fg = 0: fh+k(kfh)+2f(kfh)=0fh + k(\frac{kf}{h}) + 2f(\frac{kf}{h}) = 0 fh2+k2f+2kf2=0fh^2 + k^2f + 2kf^2 = 0 f(h2+k2+2kf)=0f(h^2 + k^2 + 2kf) = 0. This implies f=0f=0 or h2+k2+2kf=0h^2 + k^2 + 2kf = 0. If f=0f=0, then g2=a2g^2=a^2. From kf=hgkf=hg, hg=0hg=0. If h0h \neq 0, then k=0k=0, giving R(h,0). If k0k \neq 0, then h=0h=0, giving R(0,k). If f=0f=0, the line PQ is gx+2fg=0gx+2fg=0, which is gx=0gx=0 if g0g \neq 0. This means x=0x=0. The foot of the perpendicular from origin to x=0x=0 is (0,0). If h2+k2+2kf=0h^2 + k^2 + 2kf = 0, then f=h2+k22kf = -\frac{h^2+k^2}{2k}. From kf=hgkf=hg, g=kfh=kh(h2+k22k)=h2+k22hg = \frac{kf}{h} = \frac{k}{h} \left(-\frac{h^2+k^2}{2k}\right) = -\frac{h^2+k^2}{2h}. Substitute these into g2+f2=a2g^2+f^2=a^2: (h2+k22h)2+(h2+k22k)2=a2\left(-\frac{h^2+k^2}{2h}\right)^2 + \left(-\frac{h^2+k^2}{2k}\right)^2 = a^2 (h2+k2)24h2+(h2+k2)24k2=a2\frac{(h^2+k^2)^2}{4h^2} + \frac{(h^2+k^2)^2}{4k^2} = a^2 (h2+k2)2(14h2+14k2)=a2(h^2+k^2)^2 \left(\frac{1}{4h^2} + \frac{1}{4k^2}\right) = a^2 (h2+k2)2(k2+h24h2k2)=a2(h^2+k^2)^2 \left(\frac{k^2+h^2}{4h^2k^2}\right) = a^2 (h2+k2)34h2k2=a2\frac{(h^2+k^2)^3}{4h^2k^2} = a^2 (h2+k2)3=4a2h2k2(h^2+k^2)^3 = 4a^2h^2k^2. Replacing (h,k) with (x,y): (x2+y2)3=4a2x2y2(x^2+y^2)^3 = 4a^2x^2y^2. Dividing by x2y2x^2y^2: (x2+y2)3x2y2=4a2\frac{(x^2+y^2)^3}{x^2y^2} = 4a^2. (x2+y2)2(x2+y2x2y2)=4a2(x^2+y^2)^2 \left(\frac{x^2+y^2}{x^2y^2}\right) = 4a^2. (x2+y2)2(1y2+1x2)=4a2(x^2+y^2)^2 \left(\frac{1}{y^2} + \frac{1}{x^2}\right) = 4a^2.